The X-ray transform on constant curvature disks

François Monard

Dept. of Mathematics, University of California Santa Cruz

August 6, 2019
MS. 3: Gen. RT and Applications in Imaging
Cormack Conference, Tufts University
Toy Model: The X-ray transform on CCD’s

Let M the unit disk in \mathbb{R}^2. For $\kappa \in (-1, 1)$ define the metric $g_\kappa(z) := (1 + \kappa|z|^2)^{-2}|dz|^2$ on M, of constant curvature 4κ.

\[
\kappa = -0.8
\]

A family of **simple** metrics which degenerates at $\kappa \to \pm 1$.
Introduction

Toy Model: The X-ray transform on CCD’s

Let M the unit disk in \mathbb{R}^2. For $\kappa \in (-1, 1)$ define the metric $g_\kappa(z) := (1 + \kappa |z|^2)^{-2} |dz|^2$ on M, of constant curvature 4κ.

$\kappa = -0.4$

A family of simple metrics which degenerates at $\kappa \to \pm 1$.
Introduction

Toy Model: The X-ray transform on CCD’s

Let M the unit disk in \mathbb{R}^2. For $\kappa \in (-1, 1)$ define the metric $g_\kappa(z) := (1 + \kappa|z|^2)^{-2}|dz|^2$ on M, of constant curvature 4κ.

$\kappa = 0$

A family of simple metrics which degenerates at $\kappa \to \pm 1$.
Toy Model: The X-ray transform on CCD’s

Let M the unit disk in \mathbb{R}^2. For $\kappa \in (-1, 1)$ define the metric $g_\kappa(z) := (1 + \kappa |z|^2)^{-2} |dz|^2$ on M, of constant curvature 4κ.

$\kappa = 0.4$

A family of simple metrics which degenerates at $\kappa \to \pm 1$.
Let M the unit disk in \mathbb{R}^2. For $\kappa \in (-1, 1)$ define the metric $g_\kappa(z) := (1 + \kappa |z|^2)^{-2} |dz|^2$ on M, of constant curvature 4κ.

$k = 0.8$

A family of simple metrics which degenerates at $\kappa \to \pm 1$.
The X-ray transform on constant curvature disks

Introduction

The XRT on media with variable refractive index

The general project is to understand the XRT on manifolds. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc.

By 'understand' we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
- Range characterizations, SVD (if possible!).
- Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).
The X-ray transform on media with variable refractive index

The general project is to understand the XRT on manifolds. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc...

By 'understand' we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
- Range characterizations, SVD (if possible!).
- Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).
The X-ray transform on constant curvature disks

Introduction

The XRT on media with variable refractive index

The general project is to understand the XRT on simple manifolds. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc.

By 'understand' we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
- Range characterizations, SVD (if possible!).
- Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).
The X-ray transform on constant curvature disks

Introduction

The X-ray transform on media with variable refractive index

The general project is to understand the XRT on simple surfaces. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc.

By 'understand' we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
- Range characterizations, SVD (if possible!).
- Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).
The X-ray transform on media with variable refractive index

The general project is to understand the XRT on CCD’s.

Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc.

By 'understand' we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
- Range characterizations, SVD (if possible!).
- Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).
The X-ray transform on media with variable refractive index

The general project is to understand the XRT on CCD’s. Applications to

- X-ray CT in media with variable refractive index.
- Travel-time tomography/boundary rigidity, etc.

By ‘understand’ we mean:

- Injectivity. Stability estimates.
- Reconstruct various types of integrands (functions, vectors, tensor fields) explicitly and efficiently.
- Range characterizations, SVD (if possible!).
- Mitigate the trade-off between parallel and fan-beam geometries (starting with the Euclidean case).
Parallel v/s fan-beam geometry

Parallel geometry: enjoys the Fourier Slice theorem, which allows for a rigorous, efficient regularization theory.

Fan-beam geometry:
- 'natural' acquisition geometry, then traditionally rebinned into parallel data before processed. [Natterer '01]
- no parallel geometry on non-homogeneous surfaces. Instead, PDE’s on the unit phase space.

The Euclidean disk benefits from both viewpoints.
Parallel v/s fan-beam geometry

Parallel geometry: enjoys the Fourier Slice theorem, which allows for a rigorous, efficient regularization theory.

Fan-beam geometry:
- 'natural' acquisition geometry, then traditionally rebinned into parallel data before processed.
 [Natterer '01]
- no parallel geometry on non-homogeneous surfaces. Instead, PDE’s on the unit phase space.

The **Euclidean disk** benefits from both viewpoints.
Introduction

Literature, or rather, authors...

Radon, Funk, Helgason, Ludwig, Gel’fand, Graev, Quinto, Cormack, Natterer, Maass, Louis, Rigaud, Hahn, Kuchment, Agranovsky, Ambartsoumian, Krishnan, Abishek, Mishra
Herglotz, Wiechert, Zoeppritz, Anikonov, Romanov, Mukhometov, Sharafutdinov, Pestov, Uhlmann, Vasy, Stefanov, Zhou, Assylbekov, Paternain, Salo, Ilmavirta, Guillarmou, Guillemin, Railo, Lehtonen, Cekić...
The X-ray transform on constant curvature disks

Introduction

Literature, or rather, authors...

Radon, Funk, Helgason, Ludwig, Gel’fand, Graev, Quinto, Cormack, Natterer, Maass, Louis, Rigaud, Hahn, Kuchment, Agranovsky, Ambartsoumian, Krishnan, Abishek, Mishra
Herglotz, Wiechert, Zoeppritz, Anikonov, Romanov, Mukhometov, Sharafutdinov, Pestov, Uhlmann, Vasy, Stefanov, Zhou, Assylbekov, Paternain, Salo, Ilmavirta, Guillarmou, Guillemin, Railo, Lehtonen, Cekić...

THE RADON TRANSFORM ON A FAMILY OF CURVES IN THE PLANE¹

A. M. CORMACK

Abstract. Inversion formulas are given for Radon’s problem when the line integrals are evaluated along curves given, for a fixed \((p, \phi)\), by \(r^a \cos|\alpha(\theta - \phi)| = p^a\), where \(\alpha\) is real, \(\alpha \neq 0\).
1. The Euclidean case

2. Const. Curv. Disks: Range Characterization

The X-ray transform on constant curvature disks

The Euclidean case

The classical moment conditions

Parallel geometry: \(\mathcal{R} : \mathcal{S}(\mathbb{R}^2) \to \mathcal{S}(\mathbb{R} \times \mathbb{S}^1) \)

\[
\mathcal{R} f(s, \theta) = \int_{\mathbb{R}} f(-s \hat{\theta}^\perp + t \hat{\theta}) \, dt, \quad (s, \theta) \in \mathbb{R} \times \mathbb{S}^1.
\]

Moment conditions: Gelfand, Graev, Helgason, Ludwig

\(\mathcal{D}(s, \theta) = \mathcal{R} f(s, \theta) \) for some \(f \) iff

(i) \(\mathcal{D}(s, \theta) = \mathcal{D}(-s, \theta + \pi) \) for all \((s, \theta) \in \mathbb{R} \times \mathbb{S}^1 \).

(ii) For \(k \geq 0 \),

\[
p_k(\theta) := \int_{\mathbb{R}} s^k \mathcal{D}(s, \theta) \, ds = \sum_{k=0}^k a_{k,k} e^{ik\theta}.
\]

\[
\Rightarrow \int_{\mathbb{R}} \int_{\mathbb{S}^1} \mathcal{D}(s, \theta) s^k e^{ik\theta} \, ds \, d\theta = 0, \quad |p| \geq k, \quad p - k \text{ even}.
\]
The classical moment conditions

Parallel geometry: \(\mathcal{R} : \mathcal{S}(\mathbb{R}^2) \rightarrow \mathcal{S}(\mathbb{R} \times \mathbb{S}^1) \)

\[
\mathcal{R}f(s, \theta) = \int_{\mathbb{R}} f(-s\hat{\theta}^\perp + t\hat{\theta}) \, dt, \quad (s, \theta) \in \mathbb{R} \times \mathbb{S}^1.
\]

Moment conditions: Gelfand, Graev, Helgason, Ludwig

\(\mathcal{D}(s, \theta) = \mathcal{R}f(s, \theta) \) for some \(f \) iff

(i) \(\mathcal{D}(s, \theta) = \mathcal{D}(-s, \theta + \pi) \) for all \((s, \theta) \in \mathbb{R} \times \mathbb{S}^1 \).

(ii) For \(k \geq 0 \), \(p_k(\theta) := \int_{\mathbb{R}} s^k \mathcal{D}(s, \theta) \, ds = \sum_{\ell=-k}^{k} a_{\ell, k} e^{i\ell \theta} \).

\[\equiv \int_{\mathbb{S}^1} \int_{\mathbb{R}} \mathcal{D}(s, \theta) s^k e^{ip\theta} \, ds \, d\theta = 0, \quad |p| > k, \; p - k \text{ even}.\]
The classical moment conditions

Parallel geometry: $\mathcal{R} : \mathcal{S}(\mathbb{R}^2) \to \mathcal{S}(\mathbb{R} \times \mathbb{S}^1)$

$$\mathcal{R}f(s, \theta) = \int_{\mathbb{R}} f(-s\hat{\theta} + t\hat{\theta}) \, dt, \quad (s, \theta) \in \mathbb{R} \times \mathbb{S}^1.$$

Moment conditions: Gelfand, Graev, Helgason, Ludwig

$D(s, \theta) = \mathcal{R}f(s, \theta)$ for some f iff

(i) $D(s, \theta) = D(-s, \theta + \pi)$ for all $(s, \theta) \in \mathbb{R} \times \mathbb{S}^1$.

(ii) For $k \geq 0$, $p_k(\theta) := \int_{\mathbb{R}} s^k D(s, \theta) \, ds = \sum_{\ell=-k}^{k} a_{\ell,k} e^{i k \theta}$.

$\Leftrightarrow \int_{\mathbb{S}^1} \int_{\mathbb{R}} D(s, \theta)s^k e^{ip\theta} \, ds \, d\theta = 0, \ |p| > k, \ p - k \ \text{even.}$
The classical moment conditions

Parallel geometry: \(\mathcal{R} : \mathcal{S}(\mathbb{R}^2) \to \mathcal{S}(\mathbb{R} \times \mathbb{S}^1) \)

\[
\mathcal{R}f(s, \theta) = \int_{\mathbb{R}} f(-s\hat{\theta}^\perp + t\hat{\theta}) \, dt, \quad (s, \theta) \in \mathbb{R} \times \mathbb{S}^1.
\]

Moment conditions: Gelfand, Graev, Helgason, Ludwig

\(D(s, \theta) = \mathcal{R}f(s, \theta) \) for some \(f \) iff

(i) \(D(s, \theta) = D(-s, \theta + \pi) \) for all \((s, \theta) \in \mathbb{R} \times \mathbb{S}^1 \).

(ii) For \(k \geq 0 \), \(p_k(\theta) := \int_{\mathbb{R}} s^k D(s, \theta) \, ds = \sum_{\ell=-k}^k a_{\ell,k} e^{ik\theta} \).

\[\iff \int_{\mathbb{S}^1} \int_{\mathbb{R}} D(s, \theta)s^k e^{ip\theta} \, ds \, d\theta = 0, \quad |p| > k, \ p - k \text{ even}. \]
The X-ray transform on constant curvature disks

The Euclidean case

The Pestov-Uhlmann range characterization

\[l_0 : C^\infty(M) \rightarrow C^\infty_+ (\partial_+ SM) \]

\[l_0 f(x, v) = \int_0^{\tau(x, v)} f(\gamma_{x,v}(t)) \, dt. \]

\(S \): scattering relation

Range characterization of \(l_0 \):

\[l_0(C^\infty(M)) = P_-(C^\infty_\alpha(\partial_+ SM)), \]

\([\text{Pestov-Uhlmann '05}]\)

\(P_- \) takes the form \(P_- := A^*_+ H_- A_+ \), where

\[\bullet A_+ : C^\infty(\partial_+ SM) \rightarrow C^\infty(\partial SM) \text{ symmetrization w.r.t. } S. \]

\[\bullet H_- : \text{odd Hilbert transform on the fibers of } \partial SM. \]

\[\bullet A^*_+ : C^\infty(\partial SM) \rightarrow C^\infty(\partial SM): A^*_+ f(x, v) = f(x, v) - f(S(x, v)). \]
The X-ray transform on constant curvature disks

The Euclidean case

The Pestov-Uhlmann range characterization

\[I_0 : C^\infty(M) \rightarrow C^\infty(\partial_+ SM) \]

\[I_0 f(x, v) = \int_0^{\tau(x, v)} f(\gamma_{x,v}(t)) \, dt. \]

\(S \): scattering relation

Range characterization of \(I_0 \):

\[I_0(C^\infty(M)) = P_-(C_\alpha^\infty(\partial_+ SM)), \]

\[(M, g) \]

\[\phi_t(x, v) = (\gamma_{x,v}(t), \dot{\gamma}_{x,v}(t)) \]

\[S \text{: scattering relation} \]

\[\text{Range characterization of } I_0 : \]

\[I_0(C^\infty(M)) = P_-(C_\alpha^\infty(\partial_+ SM)), \]

\[\text{[Pestov-Uhlmann '05]} \]

\(P_- \) takes the form \(P_- := A^*_H A_+ \), where

- \(A_+ : C^\infty(\partial_+ SM) \rightarrow C^\infty(\partial SM) \) symmetrization w.r.t. \(S \).

- \(H_- \): odd Hilbert transform on the fibers of \(\partial SM \).

- \(A^*_+ : C^\infty(\partial SM) \rightarrow C^\infty(\partial SM) \): \(A^*_+ f(x, v) = f(x, v) - f(S(x, v)) \).
The X-ray transform on constant curvature disks

The Euclidean case

Equivalence of ranges characterizations

Theorem (M., IPI, ’15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_- = A^* H A_+$.

- Euclidean scattering relation:
 \[S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha). \]
- Explicit construction of the SVD of $P_- : L^2(\theta + SM) \rightarrow L^2(\theta + SM)$.
- Reparameterized moment conditions is equivalent to saying “$D \perp \text{Range } P_-$.”

We also understand how the cokernel can be realized by other types of integrands.
The X-ray transform on constant curvature disks

The Euclidean case

Equivalence of ranges characterizations

Theorem (M., IPI, ’15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_- = A^*_H A_+$.

- Euclidean scattering relation:
 \[S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha). \]

- Explicit construction of the SVD of $P_- : L^2(\partial_+ SM) \rightarrow L^2(\partial_+ SM)$.

- Reparameterized moment conditions is equivalent to saying “$D \perp \text{Range } P_-$.”

We also understand how the cokernel can be realized by other types of integrands.
The X-ray transform on constant curvature disks

The Euclidean case

Equivalence of ranges characterizations

Theorem (M., IPI, ’15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_- = A^* H_- A_+$.

- **Euclidean scattering relation:**
 \[S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha). \]

- **Explicit construction of the SVD of P_-:**
 \[P_- : L^2(\partial_+ SM) \to L^2(\partial_+ SM). \]

- Reparameterized moment conditions is equivalent to saying “$\mathcal{D} \perp \text{Range } P_-$”.

\[u'_{p,q} = e^{ip\beta} (e^{i(2q+1)\alpha} + (-1)^p e^{i(2(p-q)-1)\alpha}) \]

We also understand how the cokernel can be realized by other types of integrands.
The X-ray transform on constant curvature disks

The Euclidean case

Equivalence of ranges characterizations

Theorem (M., IPI, ’15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_- = A^* H_- A_+$.

- Euclidean scattering relation:
 \[S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha). \]

- Explicit construction of the SVD of $P_- : L^2(\partial_+ SM) \to L^2(\partial_+ SM)$.

- Reparameterized moment conditions is equivalent to saying “$\mathcal{D} \perp \text{Range } P_-$”.

\[
 u'_{p,q} = e^{ip\beta} (e^{i(2q+1)\alpha} + (-1)^p e^{i(2(p-q)-1)\alpha})
\]

We also understand how the cokernel can be realized by other types of integrands.
The X-ray transform on constant curvature disks

The Euclidean case

Equivalence of ranges characterizations

Theorem (M., IPI, ’15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_- = A^* H A_+$.

- Euclidean scattering relation:
 $S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha)$.

- Explicit construction of the SVD of $P_- : L^2(\partial_+ SM) \to L^2(\partial_+ SM)$.

- Reparameterized moment conditions is equivalent to saying “$\mathcal{D} \perp \text{Range } P_-$”.

$$u'_{p,q} = e^{iq\beta} (e^{i(2q+1)\alpha} + (-1)^p e^{i(2(p-q)-1)\alpha})$$

We also understand how the cokernel can be realized by other types of integrands.
The X-ray transform on constant curvature disks
The Euclidean case

Equivalence of ranges characterizations

Theorem (M., IPI, ’15)

Both range characterizations above are equivalent.

Sketch of proof: Understand the operator $P_- = A^* H A_+$.

- Euclidean scattering relation:
 $S(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha)$.

- Explicit construction of the SVD of $P_- : L^2(\partial_+ SM) \to L^2(\partial_+ SM)$.

- Reparameterized moment conditions is equivalent to saying “$\mathcal{D} \perp \text{Range } P_-$”.

We also understand how the cokernel can be realized by other types of integrands.

$$u'_{p,q} = e^{ip\beta}(e^{i(2q+1)\alpha} + (-1)^p e^{i(2p-q-1)\alpha})$$
The X-ray transform on constant curvature disks

The Euclidean case

SVD of I_0

Zernike polynomials:
$Z^{n,k}$, $n \in \mathbb{N}_0$, $0 \leq k \leq n$.

Uniquely defined through the properties:

[Kazantzev-Bukhgeym '07]

- $Z_{n,0} = z^n$.
- $\partial_z Z_{n,k} = -\partial_z Z_{n,k-1}$,
 $1 \leq k \leq n$.
- $Z_{n,k}|_{\partial M(e^{i\beta})} = e^{i(n-2k)\beta}$.

In addition,

$$\langle Z_{n,k}, Z_{n',k'} \rangle_{L^2(M)} = \frac{\pi}{n+1} \delta_{n,n'} \delta_{k,k'}.$$

$$I_0[Z^{n,k}] = \frac{C}{n+1} e^{i(n-2k)(\beta+\alpha+\pi)} (e^{i(n+1)\alpha} + (-1)^n e^{-i(n+1)\alpha}).$$

(in parallel coordinates, $\beta + \alpha + \pi = \theta$ and $\sin \alpha = s$)
The X-ray transform on constant curvature disks

The Euclidean case

SVD of I_0

Zernike polynomials:
$Z^{n,k}, n \in \mathbb{N}_0, 0 \leq k \leq n.$

Uniquely defined through the properties:

- $Z_{n,0} = z^n$.
- $\partial_{\bar{z}} Z_{n,k} = -\partial_z Z_{n,k-1}, 1 \leq k \leq n.$
- $Z_{n,k} \big|_{\partial M(e^{i\beta})} = e^{i(n-2k)\beta}$.

In addition,

$$(Z_{n,k}, Z_{n',k'})_{L^2(M)} = \frac{\pi}{n+1} \delta_{n,n'} \delta_{k,k'}.$$
The X-ray transform on constant curvature disks
The Euclidean case

SVD of I_0

Zernike polynomials:
$Z^{n,k}$, $n \in \mathbb{N}_0$, $0 \leq k \leq n$.

Uniquely defined through the properties:

[Kazantzev-Bukhgeym ’07]

- $Z_{n,0} = z^n$.
- $\partial \bar{z} Z_{n,k} = -\partial z Z_{n,k-1}$, $1 \leq k \leq n$.
- $Z_{n,k} \big|_{\partial M} (e^{i\beta}) = e^{i(n-2k)\beta}$.

In addition,

$$(Z_{n,k}, Z_{n',k'})_{L^2(M)} = \frac{\pi}{n + 1} \delta_{n,n'} \delta_{k,k'}.$$

$$I_0[Z^{n,k}] = \frac{C}{n + 1} e^{i(n-2k)(\beta + \alpha + \pi)} (e^{i(n+1)\alpha} + (-1)^n e^{-i(n+1)\alpha}).$$

(in parallel coordinates, $\beta + \alpha + \pi = \theta$ and $\sin \alpha = s$)
Outline

1. The Euclidean case

2. Const. Curv. Disks: Range Characterization

The X-ray transform on constant curvature disks

Const. Curv. Disks: Range Characterization

Range characterizations: statement

Theorem (Mishra-M., preprint ’19)

Let M equipped with the metric g_{κ} for $\kappa \in (-1, 1)$. Suppose $u \in C^\infty(\partial_+ SM)$ such that $S^*_Au = u$. Then $u \in l_0(C^\infty(M))$ iff either of the following is satisfied

1. $u = P_- w$ for some $w \in C^\infty_{\alpha}(\partial_+ SM)$, [Pe-Uhl, ’04]

2. u satisfies a complete set of orthogonality/moment conditions:

 $$(u, \psi^{\kappa}_{nk})_{L^2(\partial_+ SM, d\Sigma)} = 0, \quad n \geq 0, \quad k < 0, \quad k > n,$$

where we have defined

$$\psi^{\kappa}_{nk} := \frac{(-1)^n}{4\pi} \sqrt{s^{\kappa}_n(\alpha)} e^{(n+2k)(\beta+s^{\kappa}_n(\alpha))} (e^{(n+1)s^{\kappa}_n(\alpha)} + (-1)^n e^{-(n+1)s^{\kappa}_n(\alpha)})$$

$$s^{\kappa}_n(\alpha) := \tan^{-1} \left(\frac{1 - \kappa}{1 + \kappa} \tan \alpha \right)$$

$$s^{\kappa}_0(\alpha) = \alpha, \quad s^{\kappa} \circ s_{-\kappa} = \text{id}$$

3. $C_- u = 0$, where $C_- := \frac{1}{4\pi} H^* A_{\kappa} - (\text{id} + C_2)^2 = \text{Proj}_{\text{ran} I_0}$
Range characterizations: statement

Theorem (Mishra-M., preprint ’19)

Let M equipped with the metric g_κ for $\kappa \in (-1, 1)$. Suppose $u \in C^\infty(\partial_+ SM)$ such that $S_A^* u = u$. Then $u \in l_0(C^\infty(M))$ iff either of the following is satisfied

1. $u = P_- w$ for some $w \in C^\infty_{\alpha,+,-}(\partial_+ SM)$. [Pe-Uhl, ’04]

2. u satisfies a complete set of orthogonality/moment conditions:

$$
(u, \psi_{n,k}^\kappa)_{L^2(\partial_+ SM, d\Sigma^2)} = 0, \quad n \geq 0, \; k < 0, \; k > n,
$$

where we have defined

$$
\psi_{n,k}^\kappa := \frac{(-1)^n}{4\pi} \sqrt{s'_\kappa(\alpha)} e^{i(n-2k)(\beta + s_\kappa(\alpha))} (e^{i(n+1)s_\kappa(\alpha)} + (-1)^n e^{-i(n+1)s_\kappa(\alpha)}),
$$

$$
s_\kappa(\alpha) := \tan^{-1}\left(\frac{1-\kappa}{1+\kappa} \tan \alpha\right). \quad (s_0(\alpha) = \alpha, \quad s_\kappa \circ s_{-\kappa} = id)
$$

3. $C_- u = 0$, where $C_- := \frac{1}{2} A^* H A_-$

(id + C_-^2 = \Pi_{ran I_0})
The X-ray transform on constant curvature disks

Const. Curv. Disks: Range Characterization

Range characterizations: statement

Theorem (Mishra-M., preprint ’19)

Let M equipped with the metric g_κ for $\kappa \in (-1, 1)$. Suppose $u \in C^\infty(\partial_+ SM)$ such that $S_A^* u = u$. Then $u \in l_0(C^\infty(M))$ iff either of the following is satisfied

1. $u = P_- w$ for some $w \in C^\infty_{\alpha, +, -}(\partial_+ SM)$. [Pe-Uhl, ’04]
2. u satisfies a complete set of orthogonality/moment conditions:

$$
(u, \psi^\kappa_{n,k})_{L^2(\partial_+ SM, d\Sigma^2)} = 0, \quad n \geq 0, \ k < 0, \ k > n,
$$

where we have defined

$$
\psi^\kappa_{n,k} := \frac{(-1)^n}{4\pi} \sqrt{s'_\kappa(\alpha)} e^{i(n-2k)(\beta + s_\kappa(\alpha))} (e^{i(n+1)s_\kappa(\alpha)} + (-1)^n e^{-i(n+1)s_\kappa(\alpha)}),
$$

$$
s_\kappa(\alpha) := \tan^{-1} \left(\frac{1 - \kappa}{1 + \kappa} \tan \alpha \right). \quad (s_0(\alpha) = \alpha, \ s_\kappa \circ s_{-\kappa} = id)
$$

3. $C_- u = 0$, where $C_- := \frac{1}{2} A^* H A_-$ (id + $C_-^2 = \Pi_{ran I0}$)
Range characterizations: statement

Theorem (Mishra-M., preprint ’19)

Let M equipped with the metric g_κ for $\kappa \in (-1, 1)$. Suppose $u \in C^\infty(\partial_+ SM)$ such that $S_A^* u = u$. Then $u \in l_0(C^\infty(M))$ iff either of the following is satisfied

1. $u = P_- w$ for some $w \in C^\infty_{\alpha, +, -}(\partial_+ SM)$.

2. u satisfies a complete set of orthogonality/moment conditions:

$$
(u, \psi_{n,k}^\kappa)_{L^2(\partial_+ SM, d\Sigma^2)} = 0, \quad n \geq 0, \ k < 0, \ k > n,
$$

where we have defined

$$
\psi_{n,k}^\kappa := \frac{(-1)^n}{4\pi} \sqrt{s_\kappa'(\alpha)} e^{i(n-2k)(\beta + s_\kappa(\alpha))} (e^{i(n+1)s_\kappa(\alpha)} + (-1)^n e^{-i(n+1)s_\kappa(\alpha)}),
$$

$$
s_\kappa(\alpha) := \tan^{-1}\left(\frac{1 - \kappa}{1 + \kappa} \tan \alpha\right). \quad (s_0(\alpha) = \alpha, \quad s_\kappa \circ s_{-\kappa} = id)
$$

3. $C_- u = 0$, where $C_- := \frac{1}{2} A^* H A_-$
Range characterizations: statement

Theorem (Mishra-M., preprint ’19)

Let M equipped with the metric g_{κ} for $\kappa \in (-1, 1)$. Suppose $u \in C^{\infty}(\partial_+ SM)$ such that $S_A^* u = u$. Then $u \in l_0(C^{\infty}(M))$ iff either of the following is satisfied

1. $u = P_- w$ for some $w \in C^{\infty}_{\alpha, +, -}(\partial_+ SM)$. [Pe-Uhl, ’04]
2. u satisfies a complete set of orthogonality/moment conditions:
 \[(u, \psi_{n,k}^{\kappa})_{L^2(\partial_+ SM, d\Sigma^2)} = 0, \quad n \geq 0, \quad k < 0, \quad k > n,\]
 where we have defined
 \[\psi_{n,k}^{\kappa} := \frac{(-1)^n}{4\pi} \sqrt{s'_\kappa(\alpha)} e^{i(n-2k)(\beta+s_\kappa(\alpha))} (e^{i(n+1)s_\kappa(\alpha)} + (-1)^n e^{-i(n+1)s_\kappa(\alpha)}),\]
 \[s_\kappa(\alpha) := \tan^{-1} \left(\frac{1 - \kappa}{1 + \kappa \tan \alpha} \right). \quad (s_0(\alpha) = \alpha, \quad s_\kappa \circ s_{-\kappa} = id)\]
3. $C_- u = 0$, where $C_- := \frac{1}{2} A^* H A_-$

$(id + C_-^2 = \Pi_{\text{Ran } l_0})$
Theorem (Mishra-M., preprint ’19)

Let M equipped with the metric g_κ for $\kappa \in (-1, 1)$. Suppose $u \in C^\infty(\partial_+SM)$ such that $S^*_Au = u$. Then $u \in l_0(C^\infty(M))$ iff either of the following is satisfied

1. $u = P_-w$ for some $w \in C^\infty_{\alpha,+,-}(\partial_+SM)$. [Pe-Uhl, ’04]
2. u satisfies a complete set of orthogonality/moment conditions:

 $$(u, \psi_{n,k}^\kappa)_{L^2(\partial_+SM,d\Sigma^2)} = 0, \quad n \geq 0, \ k < 0, \ k > n,$$

 where we have defined

 $$\psi_{n,k}^\kappa := \frac{(-1)^n}{4\pi} \sqrt{s'_\kappa(\alpha)} e^{i(n-2k)(\beta+s_\kappa(\alpha))} (e^{i(n+1)s_\kappa(\alpha)} + (-1)^n e^{-i(n+1)s_\kappa(\alpha)}),$$

 $$s_\kappa(\alpha) := \tan^{-1}\left(\frac{1 - \kappa}{1 + \kappa \tan \alpha}\right). \quad (s_0(\alpha) = \alpha, \ s_\kappa \circ s_{-\kappa} = \text{id})$$

3. $C_-u = 0$, where $C_- := \frac{1}{2}A^*H_-A_-$ \quad (id + C_-^2 = \Pi_{\text{Ran} \ l_0})
Proof

In light of the first item, understand the action of $P_- = A^* H_- A_+$, e.g. find its SVD. Construct functions that

- extend smoothly under A_\pm
- transform well under fiberwise Hilbert transform and scattering relation

$$S(\beta, \alpha) = (\beta + \pi + 2\varsigma_\kappa(\alpha), \pi - \alpha).$$

- are even or odd w.r.t. $S_A := S \circ (\alpha \mapsto \alpha + \pi)$

This produces four families of functions, some giving the $L^2 - L^2$ SVD of P_- and the eigendecomposition of C_-. In particular, $\text{Ran } P_- = \ker C_-$. The SVD picture is identical to the Euclidean one!
Proof

In light of the first item, understand the action of $P_- = A^* H_- A_+$, e.g. find its SVD. Construct functions that

- extend smoothly under A_\pm
- transform well under fiberwise Hilbert transform and scattering relation

$$S(\beta, \alpha) = (\beta + \pi + 2\xi_\kappa(\alpha), \pi - \alpha).$$

- are even or odd w.r.t. $S_A := S \circ (\alpha \mapsto \alpha + \pi)$

This produces four families of functions, some giving the $L^2 - L^2$ SVD of P_- and the eigendecomposition of C_-. In particular, $\text{Ran } P_- = \text{ker } C_-$. The SVD picture is identical to the Euclidean one!
Proof

In light of the first item, understand the action of $P_- = A^* H_- A_+$, e.g. find its SVD. Construct functions that

- extend smoothly under A_\pm
- transform well under **fiberwise Hilbert transform** and **scattering relation**

$$S(\beta, \alpha) = (\beta + \pi + 2\varsigma_\kappa(\alpha), \pi - \alpha).$$

- are even or odd w.r.t. $S_A := S \circ (\alpha \mapsto \alpha + \pi)$

This produces four families of functions, some giving the $L^2 - L^2$ SVD of P_- and the eigendecomposition of C_-. In particular, $\text{Ran } P_- = \ker C_-$. The SVD picture is identical to the Euclidean one!
Outline

1. The Euclidean case
2. Const. Curv. Disks: Range Characterization
The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

SVD: Statement

Theorem (Mishra-M., preprint ’19)

Let M be the unit disk equipped with the metric g_κ for $\kappa \in (-1, 1)$. Define $s_\kappa(\alpha)$ and $\{\psi^\kappa_{n,k}\}_{n \geq 0, k \in \mathbb{Z}}$ as above, as well as

$$\hat{Z}_{n,k}^\kappa(z) := \sqrt{\frac{n+1}{\pi}} \left(1 - \kappa\right) \frac{1 + \kappa|z|^2}{1 - \kappa|z|^2} \frac{Z_{n,k}}{Zernike} \left(\frac{1 - \kappa}{1 - \kappa|z|^2} z\right),$$

$$\hat{\psi}_{n,k}^\kappa := 2\sqrt{1 + \kappa} \psi_{n,k}^\kappa, \quad \sigma_{n,k}^\kappa := \frac{1}{\sqrt{1 - \kappa}} \frac{2\sqrt{\pi}}{\sqrt{n+1}}.$$

- $\{\hat{Z}_{n,k}^\kappa\}_{n \geq 0, 0 \leq k \leq n}$ ONB of $L^2(M, w_\kappa)$ where $w_\kappa(z) := \frac{1 + \kappa|z|^2}{1 - \kappa|z|^2}$.
- $\{\hat{\psi}_{n,k}^\kappa\}_{n \geq 0, 0 \leq k \leq n}$ ON in $L^2(\partial^+ SM, d\Sigma^2) \cap \ker(id - S_A^*)$.

For any $f \in w_\kappa L^2(M, w_\kappa)$ expanding as

$$f = w_\kappa \sum_{n \geq 0} \sum_{k=0}^{n} f_{n,k} \hat{Z}_{n,k}^\kappa,$$

we have

$$l_0 f = \sum_{n \geq 0} \sum_{k=0}^{n} \sigma_{n,k}^\kappa f_{n,k} \hat{\psi}_{n,k}^\kappa.$$
Proof (sketch)

• Take the functions in the range of l_0, namely,

$$\psi_{n,k}^\kappa, \quad n \geq 0, \quad 0 \leq k \leq n,$$

and prove that $Z_{n,k}^\kappa := l_0^* \psi_{n,k}^\kappa$ is orthogonal on M for some weight [Maass, Louis].

• Also show that $l_0^* \psi_{n,k}^\kappa = 0$ for $k \notin 0 \ldots n$.

Note: l_0^* depends on the weight in data space. Since $\psi_{n,k}^\kappa$ is orthogonal in $L^2(\partial^+ \Sigma M)$, it is natural to define l_0^* w.r.t. this topology.
Proof (ugly)

\((\beta_-, \alpha_-)(\rho, \theta)\): coordinates of the unique curve through \((\rho e^{i0}, \theta)\).

\[
I^* \psi_{n,k}^\kappa (\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} \frac{e^{i(n+1)s(\alpha_-)} + (-1)^n e^{-i(n+1)s(\alpha_-)}}{2 \cos(\alpha_-)} d\theta \\
\propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} U_n(\sin(s(\alpha_-))) s'(\alpha_-) d\theta \quad (U_n : \text{Cheb 2})
\]

Note the following relation:

\[
\beta_- (\rho, \theta) + s(\alpha_- (\rho, \theta)) + \pi = \theta - \tan^{-1} \left(\frac{\kappa \rho^2 \sin(2\theta)}{1 + \kappa \rho^2 \cos(2\theta)} \right) = \theta'(\rho, \theta)
\]

Now change variable \(\theta \to \theta'\) with \(\frac{\partial \theta'}{\partial \theta} \propto \frac{1 - \kappa \rho^2}{1 + \kappa \rho^2} s'(\alpha_- (\rho, \theta)):\n
\[
I^* \psi_{n,k}^\kappa (\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1 + \kappa \rho^2}{1 - \kappa \rho^2} \int_{S^1} e^{i(n-2k)\theta'} U_n \left(-\frac{1 - \kappa}{1 - \kappa \rho^2} \rho \sin \theta' \right) d\theta'
\]

Now use Euclidean knowledge.

At least 3 miracles along the way.
Proof (ugly)

\((\beta_-, \alpha_-)(\rho, \theta)\): coordinates of the unique curve through \((\rho e^{i0}, \theta)\).

\[I_0^* \psi_{n,k}^\kappa(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} \sqrt{s'(\alpha_-)} \frac{e^{i(n+1)s(\alpha_-)} + (-1)^n e^{-i(n+1)s(\alpha_-)}}{2 \cos(\alpha_-)} d\theta \]

\[\propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} U_n(\sin(s(\alpha_-))) s'(\alpha_-) d\theta \quad (U_n : \text{Cheb 2}) \]

Note the following relation:

\[\beta_- (\rho, \theta) + s(\alpha_- (\rho, \theta)) + \pi = \theta - \tan^{-1} \left(\frac{\kappa \rho^2 \sin(2\theta)}{1 + \kappa \rho^2 \cos(2\theta)} \right) = \theta'(\rho, \theta) \]

Now change variable \(\theta \rightarrow \theta'\) with \(\frac{\partial \theta'}{\partial \theta} \propto \frac{1 - \kappa \rho^2}{1 + \kappa \rho^2} s'(\alpha_- (\rho, \theta)):\)

\[I_0^* \psi_{n,k}^\kappa(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1 + \kappa \rho^2}{1 - \kappa \rho^2} \int_{S^1} e^{i(n-2k)\theta'} U_n \left(- \frac{1 - \kappa}{1 - \kappa \rho^2} \rho \sin \theta' \right) d\theta' \]

Now use Euclidean knowledge.

At least 3 miracles along the way.
Proof (ugly)

$(\beta_-, \alpha_-)(\rho, \theta)$: coordinates of the unique curve through $(\rho e^{i0}, \theta)$.

\[
I_0^* \psi_n^\kappa (\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} \frac{e^{i(n+1)s(\alpha_-)} + (-1)^n e^{-i(n+1)s(\alpha_-)}}{2 \cos(\alpha_-)} d\theta
\]

\[
\propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} U_n(\sin(s(\alpha_-))) s'(\alpha_-) d\theta
\]

(U_n : Cheb 2)

Note the following relation:

\[
\beta_-(\rho, \theta) + s(\alpha_-(\rho, \theta)) + \pi = \theta - \tan^{-1} \left(\frac{\kappa \rho^2 \sin(2\theta)}{1 + \kappa \rho^2 \cos(2\theta)} \right) = \theta'(\rho, \theta)
\]

Now change variable $\theta \to \theta'$ with $\frac{\partial \theta'}{\partial \theta} \propto \frac{1 - \kappa \rho^2}{1 + \kappa \rho^2} s'(\alpha_-(\rho, \theta))$:

\[
I_0^* \psi_n^\kappa (\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1 + \kappa \rho^2}{1 - \kappa \rho^2} \int_{S^1} e^{i(n-2k)\theta'} U_n \left(- \frac{1 - \kappa}{1 - \kappa \rho^2} \rho \sin \theta' \right) d\theta'
\]

Now use Euclidean knowledge.

At least 3 miracles along the way.
Proof (ugly)

\((\beta_-, \alpha_-)(\rho, \theta)\): coordinates of the unique curve through \((\rho e^{i0}, \theta)\).

\[
I^*_0 \psi_{n,k}^\kappa (\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} \frac{e^{i(n+1)s(\alpha_-)}}{\sqrt{s'(\alpha_-)2\cos(\alpha_-)}} \frac{(-1)^n e^{-i(n+1)s(\alpha_-)}}{2\cos(\alpha_-)} d\theta
\]

\[
\propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} U_n(s(\alpha_-)) s'(\alpha_-) d\theta
\]

\((U_n : \text{Cheb 2})\)

Note the following relation:

\[
\beta_-(\rho, \theta) + s(\alpha_- (\rho, \theta)) + \pi = \theta - \tan^{-1} \left(\frac{\kappa \rho^2 \sin(2\theta)}{1 + \kappa \rho^2 \cos(2\theta)} \right) = \theta'(\rho, \theta)
\]

Now change variable \(\theta \rightarrow \theta'\) with \(\frac{\partial \theta'}{\partial \theta} \propto \frac{1-\kappa \rho^2}{1+\kappa \rho^2} s'(\alpha_- (\rho, \theta))\):

\[
I^*_0 \psi_{n,k}^\kappa (\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1 + \kappa \rho^2}{1 - \kappa \rho^2} \int_{S^1} e^{i(n-2k)\theta'} U_n \left(-\frac{1 - \kappa}{1 - \kappa \rho^2} \rho \sin \theta' \right) d\theta'
\]

Now use Euclidean knowledge.

At least 3 miracles along the way.
Proof (ugly)

\((\beta_-, \alpha_-)(\rho, \theta)\): coordinates of the unique curve through \((\rho e^{i0}, \theta)\).

\[
l_0^* \psi_{n, k}^\kappa(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} \sqrt{s'(\alpha_-)} \frac{e^{i(n+1)s(\alpha_-)} + (-1)^n e^{-i(n+1)s(\alpha_-)}}{2 \cos(\alpha_-)} d\theta
\]

\[
\propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} U_n(\sin(s(\alpha_-))) \cdot s'(\alpha_-) \ d\theta \\
(U_n: \text{Cheb 2})
\]

Note the following relation:

\[
\beta_-(\rho, \theta) + s(\alpha_- (\rho, \theta)) + \pi = \theta - \tan^{-1} \left(\frac{\kappa \rho^2 \sin(2\theta)}{1 + \kappa \rho^2 \cos(2\theta)} \right) = \theta'(\rho, \theta)
\]

Now change variable \(\theta \rightarrow \theta'\) with \(\frac{\partial \theta'}{\partial \theta} \propto \frac{1 - \kappa \rho^2}{1 + \kappa \rho^2} \cdot s'(\alpha_- (\rho, \theta)):\n
\[
l_0^* \psi_{n, k}^\kappa(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1 + \kappa \rho^2}{1 - \kappa \rho^2} \int_{S^1} e^{i(n-2k)\theta'} U_n \left(-\frac{1 - \kappa}{1 - \kappa \rho^2} \rho \sin \theta' \right) \ d\theta'
\]

Now use Euclidean knowledge.

At least 3 miracles along the way.
Proof (ugly)

\((\beta_-, \alpha_-)(\rho, \theta)\): coordinates of the unique curve through \((\rho e^{i\theta}, \theta)\).

\[
I^*_n \psi_{n,k}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} \frac{e^{i(n+1)s(\alpha_-)} + (-1)^n e^{-i(n+1)s(\alpha_-)}}{2 \cos(\alpha_-)} d\theta
\]

\[
\propto e^{i(n-2k)\omega} \int_{S^1} e^{i(n-2k)(\beta_- + s(\alpha_-))} U_n(\sin(s(\alpha_-))) \frac{\sqrt{s'(\alpha_-)}}{2 \cos(\alpha_-)} d\theta
\]

\((U_n : \text{Cheb 2})\)

Note the following relation:

\[
\beta_-(\rho, \theta) + s(\alpha_-(\rho, \theta)) + \pi = \theta - \tan^{-1}\left(\frac{\kappa \rho^2 \sin(2\theta)}{1 + \kappa \rho^2 \cos(2\theta)}\right) = \theta'(\rho, \theta)
\]

Now change variable \(\theta \rightarrow \theta'\) with \(
\frac{\partial \theta'}{\partial \theta} \propto \frac{1 - \kappa \rho^2}{1 + \kappa \rho^2} \frac{s'(\alpha_-(\rho, \theta))}{s'(\alpha_-)}
\):

\[
I^*_n \psi_{n,k}(\rho e^{i\omega}) \propto e^{i(n-2k)\omega} \frac{1 + \kappa \rho^2}{1 - \kappa \rho^2} \int_{S^1} e^{i(n-2k)\theta'} U_n\left(-\frac{1 - \kappa}{1 - \kappa \rho^2} \rho \sin \theta'\right) d\theta'
\]

Now use Euclidean knowledge.

At least 3 miracles along the way.
The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

Visualization: \(\{ Z_{n,k}^\kappa \}_{0 \leq n \leq 5, 0 \leq k \leq n}, \kappa = -0.8 \)
The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

Visualization: \(\{ Z_{n,k}^{\kappa} \}_{0 \leq n \leq 5, 0 \leq k \leq n}, \kappa = -0.4 \)
The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

Visualization: \(\{ Z_{n,k}^\kappa \} \), \(0 \leq n \leq 5, 0 \leq k \leq n, \kappa = 0 \)
The X-ray transform on constant curvature disks

 Const. Curv. Disks: Singular Value Decomposition

Visualization: \(\{ Z_{n,k}^{\kappa} \}_{0 \leq n \leq 5, 0 \leq k \leq n}, \quad \kappa = 0.4 \)
The X-ray transform on constant curvature disks

Const. Curv. Disks: Singular Value Decomposition

Visualization: \(\{ Z_{n,k}^\kappa \}_{0 \leq n \leq 5, 0 \leq k \leq n}, \kappa = 0.8 \)
Conclusions

On the geodesic X-ray transform on constant curvature disks

- Range characterizations via either projection operators or moment conditions.
- SVD of l_0 for a special choice of weights on M and $\partial_+ SM$.

Perspectives:
- tensor tomography, regularity of special invariant distributions,
- sharp Sobolev mapping properties for l_0.
- generalize to other (non-CC, non-symmetric) geometries.

Thank you

Reference:
Conclusions

On the geodesic X-ray transform on constant curvature disks

- Range characterizations via either projection operators or moment conditions.
- SVD of l_0 for a special choice of weights on M and ∂_+SM.

Perspectives:

- tensor tomography, regularity of special invariant distributions,
- sharp Sobolev mapping properties for l_0.
- generalize to other (non-CC, non-symmetric) geometries.

Thank you

Reference:
Conclusions

On the geodesic X-ray transform on constant curvature disks

- Range characterizations via either projection operators or moment conditions.
- SVD of l_0 for a special choice of weights on M and $\partial_+ SM$.

Perspectives:

- tensor tomography, regularity of special invariant distributions,
- sharp Sobolev mapping properties for l_0.
- generalize to other (non-CC, non-symmetric) geometries.

Thank you

Reference: