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Abstract. We use microlocal analysis to prove new mean value theorems

for harmonic functions on harmonic manifolds and for solutions to more gen-

eral differential equations. The equations we consider all satisfy spherical
mean value equalities, at least locally. Microlocal analysis and the mean value

property in a small set allows us to show that the solution to the differential

equation in a small set is also a solution in a much larger set.

1. Introduction

The fundamental mean value theorem in Rn characterizes harmonic functions
by their averages over spheres. Many generalizations have been proven, includ-
ing extensions to more differential equations, other manifolds and weakening of
hypotheses. In this article, we will use microlocal analysis and classical results,
including Pizzetti’s formula and generalizations, to prove mean value extension
theorems on manifolds.

The classical mean value theorem states that f ∈ C(Rn) is harmonic if and only
if for all x ∈ Rn and all r > 0,

(1.1) SMf(x, r) :=
1

Vol(S(x, r))

∫
y∈S(x,r)

f(y)dy = f(x) .

where d(x, y) = ‖x − y‖ is the standard distance, S(x, r) = {y ∈ Rn
∣∣ d(x, y) = r}

is the sphere centered at x and of radius r, and dy is the geodesic measure on
S(x, r); SM is just the spherical mean of f over S(x, r). This equivalence between
(1.1) and harmonicity is true if (1.1) is true for two well chosen radii, [12, 27],
and this two-radius theorem has been generalized to rank one symmetric spaces
[6, 8, 22] and to other differential equations [10, 21]. One can also prove mean
value characterizations of harmonic functions with restricted sets of centers and
arbitrary radius [1, 2].

Generalizations have been made to different partial differential equations (PDE)
in Rn by Poritsky [19], Volchkov [21] and others. Zalcman proved a precise corre-
spondence between solutions to differential equations and generalized mean value
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theorems [26]: a continuous function in Rn satisfies a generalized mean value the-
orem if and only if it is a solution to associated PDE.

Generalized mean value theorems can be proven using Pizzetti’s formula [17, 18]
and generalizations [26, 7, 14], as we will do in §4.1. Pizzetti’s formula can be
put into a very general context using spectral theory (see the proofs of [8, (7.5)],
[14, Theorem 2.7, p. 95] and the article [20]). Characterizations of pluriharmonic
and separately harmonic function by mean values over ellipsoids and distinguished
boundaries of polydisks have been proven [3]. Numerous results and references to
related problems are given in the well written overview articles [5, 27, 28, 29].

In the next section we will prove mean value extension theorems for harmonic
functions on manifolds. Extension theorems are proven for solutions to other PDE
on Rn in §3, and on symmetric spaces in §4.

2. Harmonic Functions

The basic mean value theorem is the equivalence of (1.1) and harmonicity, and
the most general setting in which this is valid is that of harmonic manifolds [25, p.
223 ff.].

Definition 2.1. A smooth Riemannian manifold without boundary, M , is locally
harmonic (or a harmonic space) if and only for each x ∈M there is a positive real
number ε and a function G : [0, ε)→ R such that the function g : D(x, ε)\{x} → R
defined by g(y) = G(d(x, y)) satisfies ∆g = 0.

The harmonic manifolds include all two-point homogeneous spaces (spaces for
which there is an isometry taking any two points to any other two points the same
distance apart). These are the rank-one symmetric spaces. However, contrary
to the classical conjecture of Lichnerowicz, there is a class of harmonic spaces, the
Damek-Ricci spaces, that are not two-point homogeneous spaces. See [9] for details.

Let M be a Riemannian manifold. Then, the left hand side of (1.1) makes sense
where S(x, r) is the geodesic sphere centered at x ∈ M and of sufficiently small
radius r > 0. Let D(x, r) = {y ∈ M

∣∣ d(x, y) ≤ r} be the closed disk of radius r
centered at x and for U ⊂M , let D(U, r) =

⋃
x∈U D(x, r).

A fundamental result of Willmore [23] states that every harmonic function in a
harmonic space satisfies (1.1), at least for spheres of small radius. Furthermore, if
a C2 function satisfies (1.1) locally about each point in a harmonic manifold, then
it is harmonic [25, Theorem 6.7.6]. Finally, it is useful to note that every locally
harmonic manifold is real-analytic. This is true because harmonic manifolds are
Einstein and Einstein manifolds are real-analytic [25, p. 229-230].

These basic theorems and microlocal analysis allow us to prove the following
mean value extension theorem.

Theorem 2.2. Let M be a locally harmonic manifold and let U be a nonempty
connected, open set in M . Let R > 0 and assume for each y ∈ D(U, 2R) the
injectivity radius of M at y is greater than R. Assume f ∈ C2(D(U,R)) and for
each x ∈ U and each r ∈ (0, R), f satisfies the mean value equality (1.1). Then f
is harmonic in D(U,R).

On the other hand, if f is harmonic in D(U,R), then f satisfies the mean value
equality (1.1) for all x ∈ U and r ∈ (0, R).
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In the first part of this theorem, we assume the mean value property only for
spheres with center in the small set U , and our theorem allows us to extend har-
monicity out of U into all of D(U,R). Even on Rn, classical counterexamples
show the hypothesis f ∈ C2 is necessary for the first part of the theorem. The as-
sumptions about injectivity radius ensure that spheres S(y, r) will be diffeomorphic
to Euclidean spheres and that SM and its dual will be well defined real-analytic
Fourier integral operators. The second part of the theorem is classical.

Proof of Theorem 2.2. We need two theorems from real-analytic microlocal analy-
sis. For a distribution, f on M , let WFA(f) be the real-analytic wavefront set of f
[15, Definition 8.4.3]; intuitively, (x, ξ) ∈WFA(f) means that f is not real-analytic
at x in direction ξ ∈ T ∗x (M).

Let W be a submanifold of M , then the conormal bundle N∗(W ) is defined as
the set of all covectors above W that are conormal to T (W ): N∗(W ) = {(x, ξ) ∈
T ∗(M)

∣∣x ∈ W, Tx(W ) ⊂ ker ξ}. The first theorem we need is a result of Kawai,
Kashiwara, and Hörmander.

Lemma 2.3 (Microlocal Holmgren Lemma [15, Theorem 8.5.6]). Let M be a real-
analytic manifold and let W be a C2 hypersurface in M . Let f be a distribution in
M . Let (y0, ξ0) ∈ N∗(W ) \ {0} and assume y0 ∈ supp f and f is zero locally near
y0 on one side of W 1. Then (y0, ξ0) ∈WFA(f).

If f is zero on one side of W near y0 and y0 ∈ supp f , then f cannot be real-
analytic near y0. Lemma 2.3 is a strengthening of this idea because it asserts not
only that f is not real-analytic at y0, but that the conormal directions to W must
be in WFA(f) above y0.

The other fundamental theorem is a microlocal regularity theorem for SM . Un-
der the assumptions of Theorem 2.2, SM is a real-analytic elliptic Fourier integral
operator associated to a specific Lagrangian manifold, and the microlocal analysis
of this operator was worked out in [13, §3.2]. The microlocal regularity theorem is
as follows.

Lemma 2.4 (Microlocal Regularity Lemma [13, Proposition 3.2.1]). Let M be a
real-analytic manifold. Let R > 0 and assume for each y ∈ D(U, 2R) the injectivity
radius of M at y is greater than R. Let f be a distribution in M and assume
SMf(x, r) is real-analytic for (x, r) ∈ U × (0, R). Then

(2.1) WFA(f) ∩N∗(S(x, r)) = ∅ ∀x ∈ U, r ∈ (0, R) .

What (2.1) means is that if SMf is real analytic then f must be real analytic
in directions conormal to the spheres, S(x, r), that the spherical mean integrates
over. The proof of Lemma 2.4 is given in [13], and it includes a calculation of the
Lagrangian manifold associated to the Fourier integral operator SM .

Our last tool shows that a zero function extends if the analyticity condition (2.1)
holds.

Lemma 2.5 (Extension Lemma). Let M be a real-analytic manifold and let U be a
nonempty connected, open set in M . Let R > 0 and assume for each y ∈ D(U, 2R),
the injectivity radius of M at y is greater than R. Assume g is a distribution in
D(U,R) and for each x ∈ U and each r ∈ (0, R), g satisfies the regularity condition
(2.1). Assume also that g is zero in U . Then, g is zero in the larger set D(U,R).

1There is an open neighborhood, V , of y0 such that W ∩ V divides V into two disjoint open
sets, and f is zero on one of these sets
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Proof. Let x0 ∈ U and let r0 ∈ [0, R] be the smallest radius such that S(x0, r0)
meets supp g; r0 > 0 because g is zero in U . We will show r0 = R. Assume
r0 ∈ (0, R). Let y0 be one of the points of intersection of supp g and S(x0, r0), and
let ξ0 ∈ N∗y0

(S(x0, r0)) \ {0}.
Because g is zero inside S(x0, r0) and y0 ∈ (supp g)∩S(x0, r0), (y0, ξ0) ∈WFA(g)

by the Microlocal Holmgren Lemma 2.3. However, by assumption (2.1), (y0, ξ0) /∈
WFA(g). This proves by contradiction that r ≥ R, and the lemma is proven. �

Now we have the tools to prove Theorem 2.2. Assume f satisfies (1.1) for all
x ∈ U and r ∈ (0, R). Then, by [25, Theorem 6.7.6], f is harmonic in U since
the mean value property holds for all spheres in U . Hence f is real-analytic in U .
Then, by the mean value equality (1.1), which is valid for x ∈ U and r ∈ (0, R),
SMf(x, r) = f(x) is real-analytic for (x, r) ∈ U×(0, R). The Microlocal Regularity
Lemma 2.4 can be used to conclude that (2.1) holds for f and therefore for ∆f since
∆ is a real-analytic differential operator. Finally, the Extension Lemma, 2.5, allows
us to show ∆f = 0 in D(U,R) since ∆f = 0 in U .

The second implication of Theorem 2.2 follows from Willmore’s fundamental
result [23] which states that a harmonic function in an open disk in a harmonic
manifold satisfies the mean value theorem for any sphere in the set. �

One can use the Microlocal Regularity Lemma 2.4 and the Extension Lemma 2.5
as above to provide a new support theorem for the sphere transform. The theorem
is new even in Rn, but a classical proof can be given for Rn.

Theorem 2.6. Let M be a real-analytic manifold and let U be a nonempty con-
nected, open set in M . Let R > 0 and assume for each y ∈ D(U, 2R) the injectivity
radius of M at y is greater than R. Assume f is a distribution in D(U,R) and for
each x ∈ U and each r ∈ (0, R), SMf(x, r) = 0. If f is zero in U , then f is zero
in D(U,R).

3. Other Differential Equations

In this short section, we apply the proof methods of §2 to a mean value theorem
for the Helmholtz equation and for polyharmonic functions in Rn. One can prove
these theorems by first proving Theorem 2.6 in Rn using classical techniques, but
our ideas apply immediately to these equations, and they suggest theorems for other
PDEs

It is well known [11, p. 289] that if U ⊂ Rn is an open disk and f ∈ C2(U), then
f satisfies the Helmholtz equation

(3.1) ∆f + λf = 0

if and only if

(3.2) SMf(x, r) = Γ(n/2)
J(n−2)/2(r

√
λ)

(r
√
λ/2)(n−2)/2

f(x)

for all spheres contained in U [11]. Here J(n−2)/2 is a Bessel function of the first
kind. Two radius mean value theorems have been proven for (3.1) by Volchkov [21],
and Chamberland [10], and related theorems were proven in [19, 26, 27].

Our mean value extension theorem for the Helmholtz equation is the following.
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Theorem 3.1. Let U be a nonempty connected, open set in Rn. Let R > 0 and
assume f ∈ C2(D(U,R)) satisfies the mean value property (3.2) for each x ∈ U
and each r ∈ (0, R). Then f satisfies the Helmholtz Equation (3.1) in D(U,R).

On the other hand, if f satisfies the Helmholtz Equation in D(U,R), then f
satisfies the mean value equality (3.2) for all x ∈ U and r ∈ (0, R).

Proof. The proof is similar to the proof in §2 and it will be outlined. Assume
f ∈ C2(D(U,R)) satisfies the mean value property (3.2) for every x ∈ U and
r ∈ (0, R). By [19], f satisfies the Helmholtz equation in U . Therefore, f is real-
analytic in U . By (3.2) and because J(n−2)/2 is real-analytic, this shows SMf(x, r)
is real analytic for each x ∈ U and each r ∈ (0, R). By the Microlocal Regularity
Lemma 2.4, and since (∆+λ) is an analytic partial differential operator, WFA((∆+
λ)f) ∩ N∗(S(x, r)) = ∅ for all x ∈ U , r ∈ (0, R). The proof is finished using the
Extension Lemma 2.5 on (∆ + λ)f . The second implication is classical [11, p.
289]. �

This theorem is really about eigenfunctions of the Laplacian, and Fulton Gon-
zalez and the author are developing an appropriate generalization to symmetric
spaces.

The key to the proof of Theorem 3.1 can be applied whenever there is a gener-
alized mean value theorem. Using results of Poritsky [19] (see also [11]), we prove
theorems for polyharmonic functions. We use the following lemma.

Lemma 3.2 ([19, 11]). Let N ∈ N, and let D be an open disk in Rn. Let f ∈
C2N (D). Then, ∆Nf = 0 on V if and only if the following mean value theorem
holds.

(3.3) SMf(x, r) = Γ(n/2)

N−1∑
m=0

r2m∆mf(x)

2mm! Γ(n
2 +m)

for all spheres S(x, r) ∈ D.

We use this lemma to prove the following mean value extension theorem.

Theorem 3.3. Let U be a connected open set in Rn and let N ∈ N. Let R > 0 and
let f be a C2N function in D(U,R). Assume f satisfies the mean value equality
(3.3) for all x ∈ U and r ∈ (0, R). Then, f satisfies ∆Nf = 0 in all of D(U,R).

On the other hand, if f satisfies ∆Nf = 0 in D(U,R), then f satisfies (4.2) for
x ∈ U and r ∈ (0, R).

Proof. The proof of the first implication is just as the proofs above, using the fact
that Lemma 3.2 implies that ∆Nf = 0 in U , so f is real-analytic in U . Then (3.3)
shows SMf is real-analytic in U × (0, R), so the Microlocal Regularity Lemma
2.4 can be used. Finally we use the Extension Lemma 2.5. The other implication
follows from Lemma 3.2. �

4. Pizzetti’s Formula and Generalized Mean Value Theorems

Pizzetti’s formula [17, 18] relates the circular mean value of a real-analytic func-
tion in the plane to an infinite sum of derivatives of the function at the center. It
has been generalized to spherical mean values in Rn [10, p. 287], [16, 19, 26] and
symmetric spaces ([8] for rank one, [14, Theorem 2.7, p. 95] in general) and a gener-
alization to manifolds was stated in [24]. Morally, Pizzetti’s formula is true because
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the mean value operator is a function of the Laplacian (or bi-invariant differential
operators) (see [14] and [20]).

We will prove a generalized mean value theorem for non-compact two-point ho-
mogeneous spaces (rank-one symmetric spaces). Let M be a non-compact rank-one
symmetric space and let U ⊂ M be open and connected. Let f be a real-analytic
function on U . Then, Pizzetti’s formula [8, (7.5)] states that for r sufficiently close
to zero,

(4.1)

SMf(x, r) = Γ(n/2)

∞∑
m=0

(
sinhκr

2κ

)2m

Lmf(x) where

Lm =
∆(∆− (2n+ 4β + 4)κ2) · · · (∆− (m− 1)(2n+ 4β + 4m− 4)κ2)

m!Γ(m+ (n/2))

where n is the dimension of M and where β and κ are constants related to the
structure and curvature of M [8]. It should be pointed out that the radius of
convergence in r of (4.1) can be arbitrarily small [4].

The following lemma follows immediately from (4.1).

Lemma 4.1. Let M be a non-compact rank one symmetric space and let U ⊂ M
be open and connected. Assume f ∈ C2N (U) and LNf = 0 in U . Then, f is
real-analytic in U and f satisfies the mean value equality

(4.2) SMf(x, r) = Γ(n/2)

N−1∑
m=0

( sinhκr

2κ

)2m
Lmf(x)

for x ∈ U and for sufficiently small r.
On the other hand, if f is real-analytic and satisfies (4.2) for x ∈ U and for

sufficiently small r, then LNf = 0 in U .

Proof. For the first implication, we note that since LNf = 0 in U and since LN is
analytic elliptic, then f is real-analytic in U . Furthermore, since LN is a factor of
Lk for k ≥ N , Lkf = 0 for k ≥ N . Now, equation (4.2) follows immediately from
Pizzetti’s formula (4.1). On the other hand, assume f satisfies (4.2) for sufficiently
small r. Since f is real-analytic, f also satisfies the infinite sum (4.1) for small r.
Therefore, for k ≥ N , Lkf = 0. �

Theorem 4.2. Let M be a non-compact rank-one symmetric space and let U be a
connected open set in M . Let R > 0 and let f be a real-analytic function in D(U,R).
Assume f satisfies the mean value equality (4.2) for all x ∈ U and r ∈ (0, R). Then,
f satisfies LNf = 0 in all of D(U,R).

On the other hand, if f satisfies LNf = 0 in D(U,R), then f satisfies (4.2) for
x ∈ U and r ∈ (0, R).

Since L1 = ∆, this gives Theorem 2.2 for non-compact rank-one symmetric
spaces. Theorem 3.3 is the analogous theorem for Rn. A form of Pizzetti’s formula
with a finite sum plus a remainder term is valid for C2N functions on Rn [11,
(32), p. 287]. Such a theorem should be true for symmetric space for sufficiently
smooth functions, and it would allow one to relax the real-analyticity assumption
in Theorem 4.2 to f ∈ C2N .

Proof. First, assume f satisfies (4.2) for x ∈ U and r ∈ (0, R). By Lemma 4.1,
LNf = 0 for x ∈ U . Furthermore, since (4.2) holds for r ∈ (0, R), and the right
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hand side of the equation (4.2) is analytic for (x, r) ∈ U × (0, R), f satisfies the
Microlocal Regularity Lemma 2.4 as does LNf . Now, by the Extension Lemma,
2.5, we see LNf = 0 in D(U,R).

The other implication is more elementary. Assume LNf = 0 in D(U,R). Then,
f is real-analytic in D(U,R). Since SM is a real analytic Fourier integral operator
and WFA(f) is empty above D(U,R), then WFA(SMf) is empty above U× (0, R).
That is, SMf(x, r) is real-analytic for all x ∈ U , r ∈ (0, R). Fix x0 ∈ U then
SMf(x0, r) is real-analytic as a function of r ∈ (0, R), and it satisfies the real-
analytic equation (4.2) for small r by Lemma 4.1. Therefore, (4.2) must hold for
r ∈ (0, R). �
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