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ABsTRACT. We prove support theorems for Radon transforms with real-analytic measures on horocycles
in higher rank symmetric spaces. The microlocal analysis is more difficult than for rank one, but we
prove a generalization of Helgason’s support theorem and a theorem that is new even in the classical
case.

1. Introduction.

In this paper, we prove support theorems for Radon transforms over horocycles on noncompact
symmetric spaces G/K of arbitrary rank. The measures on the horocycles are assumed to be
real-analytic and nowhere zero but are otherwise arbitrary. Theorem 4.1 generalizes Helgason’s
support theorem for the classical horocycle transform on G/K. His theorem is equivalent to the
Paley-Wiener theorem for the Fourier transform on G/K and is used to prove the global solvability
of invariant differential operators on G/K [10].

Our research is based on the pioneering work of Helgason (e.g., [9, 10]) on group-invariant Radon
transforms and Guillemin and Sternberg [4, 5, 6] on Radon transforms as Fourier integral operators.
Other authors have used Fourier integral techniques to understand Radon transforms (e.g., [1, 3,
19]). This article is a natural successor to [17] in which the rank one case is studied. The rank one
case is easier because all possible wavefront directions are detected by Radon transform data (see
Theorem 3.1).

Helgason [10] proved the support theorem for the classical horocycle transform using global
methods; i.e., the expansion of smooth functions on G/K and G/MN via the L? Fourier series on
K/M. Our methods here are purely local, employing the theory of real-analytic Fourier integral
operators (Theorem 3.1) to deduce analytic smoothness of a distribution f from support restrictions
on R, f. Then a theorem of Hormander, Kawai, and Kashiwara [14, 15] about analytic singularities
and support is used to deduce support restrictions on f from analytic smoothness of f. These local
techniques allow us to prove a support theorem, Theorem 4.2, that is new even in the classical case.
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The Radon transform, R,, is defined using the group double fibration in §2. The microlocal analy-
sis is given in §3 and the support theorems, Theorems 4.1 and 4.2, are proven in §4. Generalizations
of Theorem 4.1 are given in §5.

2. The point-horocycle double fibration.

Let G be a real semisimple non-compact Lie group. Let G = K AN be an Iwasawa decomposition
and let M be the centralizer of A in K. The point-horocycle double fibration is given by:

Z=G/M 2% Y =G/MN

(2.1) lpx
X =G/K

where px and py are the natural maps [12]. For each £ € Y, there corresponds a unique closed
horocycle in X, £ = pxp3'({¢}). For z € G/K, define # = pyp%' ({z}). Because the maps in (2.1)
are fibrations, all £ are diffeomorphic (to N), and all # are diffeomorphic (to K/M) [7, 12]. The set
Z = G/M can be imbedded in X xY as Z = {(z,£) € X xY|z € f}, and the maps px and py are
projections under this identification. Also, Z can be viewed as the set of all horocycles through z.

Let p(z,&) be a nowhere zero real-analytic function for (z,€) € Z. The Radon transform of a
function f € C.(X) is defined to be

(2.2) R, f(€) = / @ Odme(

where dmy is the canonical measure on ¢ given from the Haar measure on G [7]. This is the integral

of f over the horocycle é C X with respect to the real-analytic measure udme. The dual Radon
transform of a function g € C(Y') is defined in a similar way,

(23 Riow) = [ o(©ute. am. 0

where dm,, is the canonical measure on Z given from the Haar measure on G [7]. The transform R, :
C*(Y) — C°°(X) is continuous for similar reasons to those given in [12, Chapter 1, Proposition
3.8] for p = 1. Therefore, R, can be extended to domain £'(G/K) by duality. In particular, for
f €&'(X), we define R, f € £'(Y) by the relation (R, f,g) = (f, R,,g) for g € C(Y).

Non-standard measures are interesting because canonical measures do not occur in general, and
our proofs, involving microlocal analysis, are valid for fairly general measures. Using non-standard
measures can help focus on properties intrinsic to the Radon transform rather than on specific
symmetry relations that are valid only for special cases.

3. The microlocal analysis of R,,.

Because G/K is a real-analytic manifold, the analytic wavefront set, WF 5 (f), of a distribution
f € £'(X) can be defined using local coordinates and the definition in R* [20]; WF o (f) is a subset
of the cotangent space T*X.

The key to the support theorems is the way that R, detects singularities, Theorem 3.1. This is
described in terms of Lie algebras. Let g, ¢, a, m and n be the Lie algebras of G, K, A, M and
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N respectively. Recall that the element S € a\ 0 is regular if «(S) # 0 for all restricted roots «
(see [11, p. 292]). Let a’ denote the set of regular elements in a.

Let g = £ ® p be the Cartan decomposition of g, and let B denote the Killing form on g.
Recall that B¢ is negative definite; B, is positive definite; and that g = € ® p is an orthogonal
decomposition with respect to B [11, Prop. III 7.4]. Identify g* with g using B. If h C g, then
define

bt = {S € g|B(S,h) = 0}.
Under this identification, h* is the “conormal space” of h. Therefore, 7% X can be identified with
pandsofor g € G, Ty X = Ad(g)p. Let £ = goM N be a horocycle. Define

(3.1) N°(€) = {(9K, Ad(9)S) | g € goMN, S € o'}.

As a C p, N°(£) can be viewed as a subset of T*X. Lemma 3.2 shows N°(£) is actually a subset
of the conormal bundle of &.

Theorem 3.1. Let G be a semisimple Lie group of any real rank. Let R, be a Radon transform
on horocycles with a weight function p that is real-analytic and never zero. Let f € £'(X) and let
§ = goMN be a given horocycle. Assume R, f =0 on all horocycles in an open neighborhood of &.
Then WFA(f) NNO(&) = 0 where NO(€) is given by (3.1).

Radon transforms detect only microlocal singularities conormal to the set being integrated over
(see e.g., Lemma 3.2). This theorem implies that R,, f does not detect all singularities of f conormal
to é , but only those singularities corresponding to S € a’. If G has rank one, then o/ = a\ 0 and
so N°(&) =N *f \ 0. In this case, all directions conormal to é are detected, and a strong support
theorem is easier to prove [17]. A part of the proof of Theorem 3.1 is based on microlocal calculations
in unpublished work of Guillemin [4], and the calculations that are not given below are in [17].

Proof of Theorem 3.1. As noted above, (2.1) allows the set Z to be viewed as a subset of X xY. Let
N*Z denote the conormal bundle of Z in T*(X x Y). The microlocal analysis of R, is discovered
from the diagram on cotangent spaces that corresponds to (2.1):

r=N*Z\0 % TY)

(3.2) Jvﬂ'x
T™(X)
where mx and 7y are the natural projections.

Without loss of generality, we can assume £ = {, = M N is the identity coset in Y. The set
pyi(&) = MN/M ~ N is the orbit of MN in Z = G/M (see [7, Theorem 3.4]). Let T'y be the
subset of I' lying above p{,l (€0). The goal of the proof is to show 7y is an injective immersion
on ' N(&) C Tp. This is a kind of “local Bolker assumption” and, under this assumption, the
calculus of analytic elliptic Fourier integral operators (see [20] for the C*° category, [15, 18] for the

real-analytic category) can be applied to prove WF 5 (f) N N°(&) = 0. An analogous argument is
given in [1].

By [17, Lemma 3.2], the map nx : Ty — N*&, \ 0 is an injective immersion. So, let

(3.3) p=myomy' : N*§\0— T7Y.
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To finish the proof, we will show that 7 is an injective immersion on domain N°(§y) (Lemma 3.3),
and along the way, we will show R, is an elliptic Fourier integral operator associated to I'. The
following is Lemma 3.3 of [17].

Lemma 3.2. Let G = KAN be the Iwasawa decomposition of a semisimple Lie group of any real
rank and let M be the centralizer of A in K. Let &y be the horocycle MN. Then the conormal space
N*§ \ 0= {(gK,Ad(g)S) | g€ MN, S € a\ 0} and the cotangent space T¢)Y = a +n. The map

p=TmTyo 7r)_(1 is projection on the second factor:

p:N*é\0— T Y,

(3.4) B
p(9K, Ad(g)S) = Ad(g)S.

We can now prove that R, is an elliptic Fourier integral operator. The Schwartz kernel of R, is
integration over the manifold Z (e.g., [16]), so R,, is a Fourier integral distribution associated to I"
[13, §2.4]. Because of [17, Lemma 3.2] (see above (3.3)), the projection 7x maps to 7 X \ 0. Using
(3.4) and the fact that Ad(g) is always injective, one sees that 7y maps to 7*Y \ 0. This implies
R, is a Fourier integral operator associated with I [20]. Since p is nowhere zero, R, is elliptic.
Finally, we will check:

Lemma 3.3. The map p in (5.3-4) is an injective immersion on domain N°(&).

Proof. Using Lemma 3.2, we first prove p is injective. Let g = min; € MN and S; € o’ be such
that Ad(g1)S1 € a. As M centralizes a, Ad(n1)S1 € a. We now prove n; = e. Because S; is
regular, the following map is an analytic diffeomorphism [11, Lemma 1.5 p. 403]:

¢: N —n,

(3.5) ¢(n) = Ad(n)S; — Si.

As ¢(n1) € ann and aNn = {0}, we see that ¢(n1) = 0. Therefore, n; = e and so g1 = m; € M.
This proves that p is injective.

To show p is an immersion at (g1 K, Ad(g1)S1) € N°(&), we construct an arbitrary path through
this point and calculate derivatives. Let g(¢) be a path in M N with g(0) = g; and %(0) = Ad(g1)V1
for some V3 € m+n. Now, let S(t) be a path in o’ with S(0) = S; and £2(0) = T} € a. Then v(t) =
(9(t)K, Ad(g(t))S(t)) is a path in NO(&) with derivative 22 (0) = (Ad(g1)V4, Ad(g1)lad(V1)S1 +
T1]). Assume dZ:” (0) = Ad(g1)[ad(V1)S1 + Ti] is zero. Therefore, ad(V1)S1 = —Ti. As m
centralizes a, we can assume V; € n. Since the derivative of the function in (3.5) maps to n,
ad(V1)S1 € n and so T} € n. Now, because aNn = {0}, ad(V1)S; = 0. Finally, since the derivative

of the map (3.5) is injective, V; is zero. This proves that %(O) =0.]

4. The support theorem.

First we construct special codimension one hypersurfaces in X = G/K that are made up of
horocycles. A powerful theorem of Hérmander, Kawai, and Kashiwara gives information about the
analytic wavefront set of a distribution at the boundary of its support. Next, we use this theorem,
the special codimension one surfaces, and Lemma 4.3 to “eat away at” supp f and show that supp f
is small when f satisfies the hypotheses of Theorem 4.1 (below).
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The hypersurfaces in X are defined as follows. Let 7' C a be a complete codimension one surface
without boundary and let go € G, then the horocyclic surface H(go,T) C X is defined to be

(4.1) H(go,T) = |J (90 exp(H)N)K.
HeT

H(go,T') is an imbedded complete codimension one analytic surface in X because T is codimension
one in a and by the Iwasawa Decomposition Theorem [11]: the map a x N 5 (H,n) — exp(H)nK
is an analytic bijection onto X. Because the map K/M x A =Y, (kM,a) — kaM N is an analytic
diffeomorphism [7] and A normalizes N, it is sufficient to use kg € K rather than gy € G in (4.1).
Also, because M centralizes N, “M N” has been replaced by “N” in (4.1). If P C a is an affine
hyperplane, then H(kg, P) will be called a horocyclic plane.

Theorem 4.1. Let G be a semisimple Lie group of real rank greater than one. Let R, be a Radon
transform on horocycles with a weight function p that is real-analytic and never zero. Let f € £'(X)
and let A be an open connected subset of the set of all horocyclic planes. Assume R, f(£) =0
for all horocycles & in all horocyclic planes in A and that some horocyclic plane in A is disjoint
from supp f. Then \U{H | H € A} is disjoint from supp f.

In §5, a stronger result than Theorem 4.1 is described in which nonplanar horocyclic surfaces are
used. Helgason’s support theorem [10] for (domain £'(X) and) horocycles exterior to a geodesic
ball, B, follows from Theorem 4.1 because A = {¢ | €N B = 0} is open and connected and because
geodesic balls are determined by the horocyclic planes exterior to them.?

Using the techniques in the proof of Theorem 4.1, one can prove local support theorems such as
the following.

Theorem 4.2. Let G be a semisimple Lie group of real rank greater than one. Let R, be a Radon
transform on horocycles with a weight function p that is real-analytic and never zero. Let S be a
geodesic sphere in X. Let f € £'(X) and assume supp f is disjoint from S. Assume R, f is zero
on all horocycles meeting S. Then f = 0 inside of S.

The hypotheses of Theorem 4.2 allow supp f to include points outside S. The choice of S is
somewhat arbitrary and local support theorems can be proved for other sets as in [2, 17].

Proof of Theorem 4.1. To prove the theorem we “eat away” at supp f. Because A is connected
and some horocyclic plane in A is disjoint from supp f, there is a horocyclic plane Ho = H(ko, Po)
that meets supp f and such that f is zero on one side of H( (one argument is to construct a path
in A from a plane outside supp f to one meeting supp f and then let #y be the first horocyclic
plane in that path that meets supp f).

The goal is to get a contradiction. Let zg = gK € supp f N Ho where g = kqexp(Hy)ng for
some Hy € Py and ng € N, and let éo be the horocycle in H( containing zy. From now on, we will
let P;- denote the set of vectors in a normal to P, under the Killing form. Now, let Sp € Pg- \ 0.
The next lemma implies that (zg, Ad(g)So) € N*H,.

IFirst assume the ball is centered at the origin in X; z is a point in its boundary; and that z = kgagK for some
ko € K and ag € A. Now [8, Lemma 5.4] can be used to choose a plane P € a through log(ag) such that B is on
one side of H(koao, P).
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Lemma 4.3. Let P C a be an affine hyperplane and let kg € K. Then the conormal bundle of
H(k’o,P) 18

(4.2) N*H(ko, P) = {(gK, Ad(g)S) | g € kgexp(P)N, S € P*}.

Proof. Let g = koexp(Hp)ng for some Hy € P and nyg € N. Now é = (ko exp(HO)N)K is
the horocycle in #H(kg, P) containing gK. To show the right hand set in (4.2) is contained in
N*H(ko, P), we will show the covector (gK, Ad(g)S), for § € PL, is conormal to £ as well as to the
tangent vectors in TH(ko, P) that are transversal to €. By Lemma 3.2, (¢K, Ad(g)S) is conormal to
£. Now, let H : (—1,1) — P be any differentiable path with H(0) = H. Clearly Ad(g)S is conormal
to the infinitesimal generator of the path kgexp(H(t))ngK and so (9K, Ad(g)S) € N*H(ko, P).
Now a dimension count shows that equality holds in (4.2). |

However, a special case of a theorem of Kawai, Kashiwara, and Hormander is:

Lemma 4.4 [14, Theorem 8.5.6]. Let f € £'(X) and assume f is zero on one side of the horocyclic
plane Hy. Let zog € HoN supp f and let (zg,w) € N*Hg \ 0. Then (zg,w) € WF4f.

Hormander’s result is stated for arbitrary smooth hypersurfaces in R®, but it can be proved in X
using real-analytic local coordinates and the fact that horocyclic planes are complete codimension
one surfaces.

First assume Sy € a’. As R, f = 0 for horocycles near &, the conclusion of Theorem 3.1 implies
(0, Ad(g)So) ¢ WFa f. Using Lemmas 4.3 and 4.4, one sees that (xg, Ad(g)Sy) € WFAf. This
contradiction proves the theorem if Sy € o'.

Now assume Sy ¢ o’ and z, is as above. Because f has compact support, there is a k1 € K so
near to ko and a direction S; € ¢’ so near to Sy and hyperplanes P,,; and Pj, in a both conormal
to S; such that

(4.3) zo € H(k1, Pin)
(4.4) for each parallel hyperplane P between P,,; and P;,, the horocyclic planes H(k1, P) € A
(45) H(klapout) M supp f = 0.
The horocyclic planes in (4.4) can be used to eat away at supp f near z( as in the proof above
because S; € o'. |

Proof of Theorem 4.2. The proof is done by contradiction. Let B be the closed disk with boundary
S. Let By = BN supp f; then B; # () and, under the hypotheses of Theorem 4.2, B; NS = {.
Therefore, there is a horocyclic plane Ho = H(kq, Py) (with (P;-\ 0) C a') that meets B; and such
that B; is to one side of Hy. Since Hy meets int B, Theorem 3.1 and Lemmas 4.3 and 4.4 can be
used to show f is zero near H,y. This contradicts the choice of Hy. Note that Lemma 4.3 can be
applied because its hypotheses are satisfied locally in B and its conclusion is local (see statement
of Theorem 8.5.6 in [14]). |

5. Generalizations of Theorem 4.1.

Horocyclic planes are used in the statement of Theorem 4.1 because of their simple geometric
nature-all conormals to the horocyclic plane H(ko, P) come from the same subspace, P- C a
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(Lemma 4.3). However, a stronger theorem can be proven by using other hypersurfaces in a to
define the horocyclic surfaces (4.1). We will describe, in general, such a class of surfaces and then
outline a specific example.

Let Ty be a smooth complete hypersurface without boundary in a. Assume
(51) VH € To, N;IT(] \ 0Cda.

Here, N;Tj is the set of all vectors in a normal to Ty at H under the Killing form. Now let 7
be the collection of all translates in a of Ty. Then the generalization of Theorem 4.1 holds for
horocyclic surfaces H(ko,T') for kg € K and T € T. Condition (5.1) is simply the requirement that
all non-zero conormals to T' are regular (in a').

To prove this generalization of Theorem 4.1, one must replace Lemma 4.3 by
(5.2) N*H(ko,T) = {(gK, Ad(g)S) | g = koexp(H)n, for some H €T, ne N, S € N;T}

(the proof is similar to the proof of Lemma 4.3). The proof of the stronger theorem is now essentially
the same as for horocyclic planes with Sy € a’ because the wavefront set of f conormal to H(ko,T')
is detected by data R, f.

An example will be described in rank 2. In this case, the walls of the Weyl chambers, a\ o', are
rays with base at the origin. Choose two adjacent rays, r; and ry. For j =1, 2 let H; be the open
half-plane disjoint from r; and with boundary perpendicular to r; at the origin. Let W = H; N H,,
then W is a convex wedge. Choose a hyperbola with asymptotes 0H; U JHs and with one half in
W. Let Ty be that half-hyperbola in W. Then the non-zero conormals to T} lie in the open cone
between r; and ry and so are in a’. Therefore, Tj satisfies (5.1). Therefore, the horocyclic surfaces
defined by translates of T satisfy the generalization of Theorem 4.1. In fact, one can make the
hyperbola Tj fit closer and closer to W and then show that the generalization of Theorem 4.1 is
valid for horocyclic surfaces defined by translates of OW. These surfaces allow one to get inside
the “convex hull” of supp f because they are “convex.” The analogous constructions of Ty and the
limiting set OW are valid for spaces with rank greater than two.
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