RADON TRANSFORMS SATISFYING
THE BOLKER ASSUMPTION

ERIC TODD QUINTO

ABSTRACT. Using the techniques of real-analytic microlocal analysis, we prove support theorems for Radon transforms integrating with non-zero real-analytic measures. We assume the transforms satisfy the Bolker Assumption, a microlocal injectivity condition that simplifies the microlocal analysis.

1. INTRODUCTION.

Radon transforms are integral transforms. Given a real-analytic Riemannian manifold X and a collection, Y, of submanifolds of X, one can define a Radon transform R_μ that integrates functions on X over each submanifold in Y with respect to a measure μ. Further structure on X, Y—the double fibration (2.1) [GGS, He 1984]—is needed to prove injectivity and other properties of this transform. Guillemin and Sternberg (e.g., [GS]) have used this structure and microlocal analysis to understand properties of Radon transforms (see also [GU]). These advances make it natural to investigate general Radon transforms with arbitrary measures.

A support theorem for a Radon transform gives restrictions on the support of a function from information on the support of its Radon transform. Classical techniques have been used to prove support theorems for the transforms with canonical measures on hyperplanes [He 1964, GGV] and horocycles [He 1973]. The problem is more subtle for transforms with general measures, and support theorems have been proven under either strong symmetry conditions such as rotation invariance (e.g., [Q 1983]) or strong smoothness conditions on the measure such as real-analyticity (e.g., [BQ 1987]). A counterexample [Bo 1993] of a non-injective Radon transform on lines with a positive C^∞ measure shows the importance of strong hypotheses on the Radon transform for injectivity to hold.

In this article, we give a general support theorem, Theorem 2.2, that is valid for all Radon transforms with real-analytic measures that satisfy the Bolker Assumption (Definition 2.1). We also give a local support theorem, Proposition 2.3. In §2, the main definitions and theorems are given. The microlocal properties of R_μ are recalled and the main theorem are proven in §3.

1991 Mathematics Subject Classification. Primary: 44A12, Secondary: 58G15.

Key words and phrases. Radon transform, support theorem, Fourier integral operator.

This work has benefited greatly from discussions over the years with Jan Boman. He first suggested that we use manifolds in our joint work that are not made up of sets the Radon transform integrates over; we construct such manifolds in the proof of Theorem 2.2. The author also appreciates hospitality at Alfred Louis and Universität des Saarlandes while this research was being done. The author was partially supported by the Humboldt Stiftung and NSF grant MCS 9121862.
2. Definitions and main results.

Let X and Y be connected real-analytic manifolds. Let Z be a connected imbedded submanifold of $X \times Y$. The double fibration (below left) [GGS] has a corresponding diagram on the cotangent spaces (below right):

$$
\begin{array}{ccc}
Z & \xrightarrow{\pi_Y} & Y \\
\downarrow{\pi_X} & & \downarrow{\pi_X} \\
X & \xrightarrow{\pi_Y} & T^*(X) \setminus 0
\end{array}
\Gamma = N^*(Z) \setminus 0 \xrightarrow{\pi_Y} T^*(Y) \setminus 0
\tag{2.1}
$$

where π_X and π_Y are the natural projections in each case. In (2.1), N^*Z is the conormal bundle of Z in $T^*(X \times Y)$. If A is a submanifold of X, then we will let N^*A denote the conormal bundle of A in T^*X.

When the left diagram in (2.1) is a double fibration, the natural projections π_X and π_Y are fibrations with connected fibers and π_X is proper [GGS, He 1984]. The double fibration defines submanifolds of X, $\hat{y} = \pi_X \circ \pi_Y^{-1}(y)$, all of which are diffeomorphic to the fiber of π_Y. Let the weight $\mu(x,y)$ be real-analytic and nowhere zero on Z. For $f \in C_c(X)$, the Radon transform of f is defined at $y \in Y$ by

$$
R_\mu f(y) = \int_{x \in \hat{y}} f(x)\mu(x,y)dm_y(x)
\tag{1.2}
$$

where dm_y is the measure on \hat{y} induced from the Riemannian structure on X. By duality, $R_\mu : \mathcal{E}'(X) \rightarrow \mathcal{E}'(Y)$ is continuous. The key definition is:

Definition 2.1. The double fibration (2.1) (or the Radon transform R_μ) satisfies the Bolker Assumption if and only if $\pi_Y : \Gamma \rightarrow T^*Y \setminus 0$ is an injective immersion.

This is named after Ethan Bolker who formulated an analogous definition for finite Radon transforms. Our main theorem is:

Theorem 2.2. Let the Radon transform R_μ be defined by a real-analytic double fibration that satisfies the Bolker assumption. Assume the weight μ is nowhere zero and real-analytic. Let A be an open connected subset of Y. Assume $f \in C_c(X)$ with $R_\mu f(y) = 0$ for all $y \in A$ and assume, for some $y_0 \in A$, f is zero to infinite order on \hat{y}_0. Then, for all $y \in A$, \hat{y} is disjoint from supp f.

This theorem implies the “standard” theorem of [BQ 1987, Q 1993a,c]: if f is zero in a neighborhood of \hat{y}_0 and the other hypotheses of Theorem 2.2 hold, then f is zero on all \hat{y} for $y \in A$. This weaker theorem holds for $f \in \mathcal{E}'(X)$ as can be seen from the proof in §3. The key to Theorem 2.2 which is not in these previous theorems is a microlocal regularity theorem of Boman [Bo 1992]. Boman has used this theorem to prove support theorems for hyperplane transforms and $\mathcal{S}(\mathbb{R}^n)$ [Bo 1991].

Many classical Radon transforms satisfy the Bolker assumption. Among those are the transforms in Euclidean space integrating over: k-planes, real, complex, and quaternionic hyperplanes, and the Cayley line, [e.g., GS, Q 1993c]; the point horocycle transform on non-compact rank one symmetric spaces [Gu, Q 1993a]; and the maximal totally geodesic transforms on compact two point symmetric spaces (by

1That is, for each $n \in \mathbb{N}$, $f(x)$ is bounded by a fixed multiple of the nth power of the geodesic distance between x and \hat{y}_0.}
the projection argument in [Q 1983, p. 520]). Support theorems have been proven for classical measures on these spaces [e.g., He 1964, GGV, Gl, He 1973] and with non-standard measures [BQ 1987 (real hyperplanes), Q 1993c (other planes), Q 1993a (rank one horocycle transform), and Q 1983, Q 1987 (transforms on compact two point homogeneous spaces)]. If the Bolker Assumption does not hold for a Radon transform, then more subtle geometric arguments (e.g., [BQ 1993, GQ]) are needed to prove support theorems.

An example in [HSSW] demonstrates the necessity of some growth assumption on \(f \) near some \(y_0 \in A \). Using local versions of our arguments, one can easily prove local support theorems in the spirit of those in [Gl]. One such theorem (proved in §3) is:

Proposition 2.3. Let the Radon transform \(R_\mu \) be defined by a real-analytic double fibration that satisfies the Bolker assumption. Assume the weight \(\mu \) is nowhere zero and real-analytic. Let \(x_0 \in X \) and let \(U \) be an open connected neighborhood of \(x_0 \). Let \(f \in C_c(X) \) and assume \(R_\mu f(y) = 0 \) for all \(y \) that meet \(U \). Assume that \(f \) is zero to infinite order at \(x_0 \). Then, \(f \) is zero in \(U \).

Note that the only growth restriction on \(f \) away from \(x_0 \) is that \(f \) has compact support−\(U \) does not necessarily contain supp \(f \). If more is known about the geometry of the manifolds \(\hat{y} \), then local hole theorems such as Theorem 4.3 of [Q 1993a] are valid.

3. Proofs.

Let \(\text{WF}_A(f) \) denote the analytic wave front set of \(f \in \mathcal{D}'(X) \) [Hö 1983]. The two keys to the proofs of the main theorem are: Proposition 3.1, the microlocal properties of \(R_\mu \); and Lemma 3.2, a theorem of Hörmander, Kawai, and Kashiwara [Hö 1983] on the analytic wave front set of a distribution at the boundary of its support.

Proposition 3.1. Let \(R_\mu \) be a Radon transform with nowhere zero real-analytic weight \(\mu \) that satisfies the Bolker Assumption. Let \(f \in \mathcal{E}'(X) \) and let \(y_1 \in Y \). Assume \(R_\mu f(y) = 0 \) for all \(y \) in an open neighborhood of \(y_1 \). Let \((x, \xi) \in N^*\hat{y}_1 \setminus 0 \). Then \((x, \xi) \notin \text{WF}_A(f) \).

Proof of Proposition 3.1. It is well known that if a Radon transform satisfies the Bolker Assumption, then \(R_\mu \) is an elliptic Fourier integral operator associated with the Lagrangian manifold \(\Gamma \) and \(R_\mu^*R_\mu \) is an elliptic pseudodifferential operator [e.g., GS, Q 1980]. The statements of Proposition 3.1 follow immediately from the calculus of analytic elliptic Fourier integral operators [SKK], [Ka]: As \(R_\mu f(y) = 0 \) for \(y \) near \(y_1 \), then \((\text{WF}_A R_\mu f) \cap (T_{y_1}^*Y \setminus 0) = \emptyset \). Using the calculus of elliptic Fourier integral operators one sees that \(\pi_X \circ \pi_Y^{-1}(T_{y_1}^*Y \setminus 0) \cap \text{WF}_A f = \emptyset \). But \(\pi_X^{-1}(T_{y_1}^*Y \setminus 0) = N^*\hat{y}_1 \setminus 0 \) (see e.g., [Q 1993a, Proposition 3.2]).

The next lemma allows us to eat away at supp \(f \) using hypersurfaces. It is a special case of Theorem 8.6 [Hö 1983].

Lemma 3.2 [Hö 1983]. Let \(S \subset X \) be a \(C^2 \) hypersurface. Let \(x \in S \). Let \(f \in \mathcal{E}'(X) \) and assume \(f \) is zero on one side of \(S \) locally near \(x \) (i.e., there is a neighborhood \(U \) of \(x \) such that \(U \setminus S \) consists of two connected open sets, \(x \) is in the boundary of each, and \(f \) is zero on one of these sets). If \(x \in \text{supp} f \) and \((x, \xi) \in N^*(\partial S) \setminus 0 \), then \((x, \xi) \in \text{WF}_A(f) \).

Proof of Theorem 2.2. By the assumptions of the theorem and the conclusion of Proposition 3.1, we see that \(N^*\hat{y}_0 \cap \text{WF}_A(f) = \emptyset \). Therefore, as a distribution,
f can be restricted to \hat{y}_0. And, because f is zero to infinite order along \hat{y}_0, f is flat along \hat{y}_0 as a distribution (the proof uses the definition in [Bo 1992] and Proposition 2.5.11 of [Hö 1971] to show all distribution derivatives of f are zero along \hat{y}_0). Under these hypotheses ($N^*\hat{y}_0 \cap \text{WF}(f) = \emptyset$ and f is flat along \hat{y}_0), the conclusion of Boman’s microlocal regularity theorem [Bo 1992] is that f is zero in a neighborhood of \hat{y}_0. (His theorem is valid if \hat{y}_0 is not a hypersurface, as noted on [Bo 1992, p. 1234].)

Now that we know f is zero near \hat{y}_0, we use Lemma 3.2 to eat away further at $\text{supp } f$. If the codimension of each \hat{y} in X is one, then one can use the \hat{y} as hypersurfaces to eat away at $\text{supp } f$ using Proposition 3.1 and Lemma 3.2 (see e.g., [BQ 1987]). However, if the codimension is greater than one, then we must construct codimension one surfaces S that are “near” to \hat{y} and use these surfaces to eat away at $\text{supp } f$. We construct these surfaces S as small δ tubes about each \hat{y}.

Let $\epsilon > 0$. Let $x \in X$ and define $B_\epsilon(x)$ to be the open geodesic ball centered at x of radius ϵ. Now, let $T \subset X$. We define the ϵ neighborhood of T to be $T_\epsilon = \bigcup_{x \in T} B_\epsilon(x)$. Choose $\epsilon_0 > 0$ so small that the closure, K, of the ϵ_0 neighborhood of $\text{supp } f$ is compact.

Let $y_0 \in A$ be as in the statement of Theorem 2.2 and assume the conclusion of the theorem is false. Let $y_1 \in A$ be such that $\hat{y}_1 \cap \text{supp } f \neq \emptyset$, and let $s : [0,1] \to A$ be a continuous path from y_0 to y_1. By reparameterizing a part of this path, we can assume that $s(t)$ meets K for all t and that \hat{y}_1 is the only manifold in the path that meets $\text{supp } f$.

We begin to construct the hypersurfaces used to eat away at $\text{supp } f$. First, we must show that a sufficient number of covectors near each $N^*\hat{s}(t)$ are conormal to manifolds in A.

Lemma 3.3. There is an open conic set $V \subset T^*X \setminus 0$ such that, for each $t \in [0,1],$

i. V is a neighborhood of each $N^*\hat{s}(t) \setminus 0$, and

ii. if $(x, \xi) \in V$, then there is a $y \in A$ with $(x, \xi) \in N^*\hat{y}$.

Proof. A calculation using the fact $d\pi_Y$ has maximum rank (by the Bolker Assumption) and Proposition 4.1.4 [Hö 1971, p. 167] show that the differential of $\pi_X : \Gamma \to T^*X$ is surjective. Therefore, π_X is an open map. As A is open, $\pi_Y^{-1}(A)$ is open in Γ. Therefore, $V = \pi_X\left(\pi_Y^{-1}(A)\right)$ is open. As A is a neighborhood of each $s(t)$, one can see that V is the desired neighborhood of each $N^*\hat{s}(t) \setminus 0$ by using the diagram (2.1) and [Q 1993a, Proposition 3.2].

For $\epsilon \in (0,\epsilon_0)$ define $S_\epsilon(t) = \text{Cl}\left(\left(K \cap \hat{s}(t)\right)_{\epsilon}\right)$.

Now choose $\epsilon_1 \in (0,\epsilon_0)$ so that:

(3.1) If $\delta \in (0, \epsilon_1)$, then $S_\delta(0)$ is disjoint from $\text{supp } f$.

(3.2) For each $x \in K$, $B_{2\epsilon_1}(x)$ is contained in a convex geodesic ball on which the geodesic distance is smooth, and this convex ball is contained normal disks centered at each of its points.

Requirement (3.1) is possible because \hat{y}_0 is disjoint from the compact set $\text{supp } f$; and (3.2) can be done because K is compact and by [KN, Theorem 3.6, p. 166].

The following lemma provides the surfaces to eat away at $\text{supp } f$.

Lemma 3.4. There is a $\delta_1 \in (0, \epsilon_1)$ such that for each $t \in [0,1]$, if $x \in \text{supp } f \cap \partial S_{\delta_1}(t)$, then $\partial S_{\delta_1}(t)$ is a C^2 hypersurface near x and, if $\xi \in N^*_xS_{\delta_1}(t) \setminus 0$, then $(x, \xi) \in V$ where V is the neighborhood given in Lemma 3.3.
Proof. Let \(\delta \in (0, \varepsilon_1) \). Assume \(\partial S_\delta(t) \) meets \(\text{supp} \ f \) at a point \(x \). Then, \(x \) is \(\delta \) units from a point \(z \in \hat{s}(t) \) and both \(x \) and \(z \) are in \(K \). By (3.2), \(B_{2\varepsilon_1}(z) \) is a normal geodesic neighborhood of \(z \), and \(x \in B = B_{\varepsilon}(z) \). Using geodesic coordinates about \(z \) and (3.2), one can see that the surface \(\partial S_\delta(t) \) is the envelope of \(\delta \) balls centered at points on \(\hat{s}(t) \) near \(z \). One can calculate the envelope of the \(\delta \)-balls that make up \(S(t) \) for centers in \(B \cap \hat{s}(t) \) and show that, if \(\delta \) is sufficiently small, this envelope is smooth and all conormals to \(\partial S_\delta(t) \) are in \(V \) for points \(\delta \) units from \(B \cap \hat{s}(t) \) (start with the calculations in footnote 2 of [Q 1993b]). By choosing \(\delta \) small enough, one can ensure that \(\delta \)-balls with centers away from \(B \cap \hat{s}(t) \) do not meet this envelope. By compactness, this construction can be done for the same \(\delta \) for all points in \(\hat{s}(t) \cap K \). And, furthermore, by the choice of \(\varepsilon_1, (3.2) \), and continuity of the path \(s(t) \), and compactness of \([0, 1] \), the same \(\delta \) can be chosen for all \(t \). We let \(\delta_1 \) be such a number. [1]

By (3.1), \(S_{\delta_1}(0) \) is disjoint from \(\text{supp} \ f \) and by assumption, \(S_{\delta_1}(1) \) meets \(\text{supp} \ f \). Let \(t_1 \) be the smallest value of \(t \in [0, 1] \) such that \(S_{\delta_1}(t) \) meets \(\text{supp} \ f \). By the choice of \(t_1 \), \(S_1 = S_{\delta_1}(t_1) \) meets \(\text{supp} \ f \) only on the boundary, \(\partial S_1 \). Let \(x \in \partial S_1 \cap \text{supp} \ f \) and \(\xi \in N_2 S_1 \setminus 0 \). Then, by Lemmas 3.4 and 3.3 there is a \(y_1 \subset A \) with \((x, \xi) \in N^* y_1 \). Now, Proposition 3.1 shows that \((x, \xi) \notin WFA(f) \). However, Lemma 3.2 gives a contradiction that proves the theorem. [1]

Proof of Proposition 2.3. We use Proposition 3.1 to show \(f \) is real-analytic in \(U \).

First, we show that wavefront set inside \(U \) is detected by the given data.

Lemma 3.5. The map \(\pi_X : \Gamma \to T^* X \setminus 0 \) is surjective.

Proof. As \(\pi_X : Z \to X \) is a fibration, \(\pi_X : \Gamma \to T^* X \setminus 0 \) is a surjection on the base. So, let \(x_1 \in X \) and let \(\Gamma_{x_1} = \{(x, \xi, y, \eta) \in \Gamma | x = x_1 \} \). Then, \(\pi_X : \Gamma_{x_1} \to T^*_x X \) is an open map by the proof of Lemma 3.3. As \(\pi_X \) is open and linear on the fibers, the restriction to sphere bundles \(P : ST^*_x X \to ST^*_x X \) is also open. (To define \(P \), view the sphere bundles as bundles of open rays from origin, and define \(P \) to take each ray in the fibers of \(\Gamma_{x_1} \) to the image ray under \(\pi_X \) in \(T^*_x X \).) As \(\pi_X : Z \to X \) is proper, \(ST^*_x X \) is compact. Now, because \(ST^*_x X \) is a sphere, \(P \) is surjective. This implies \(\pi_X \) is surjective. [1]

By Lemma 3.5, for each \((x, \xi) \in T^* U \setminus 0 \), there is a \(y \in Y \) with \((x, \xi) \in N^* y \).

By the hypotheses of the theorem and because \(y \) meets \(U \) at \(x \), \(R_\mu f \) is zero near \(y \). Therefore, \((x, \xi) \notin WFA(f) \). As this is true for arbitrary \((x, \xi) \in T^* U \setminus 0 \), \(f \) must be real-analytic on \(U \). As \(f \) is zero to infinite order at \(x_0 \), \(f \) must be identically zero in \(U \).

With the appropriate definition of flatness along a manifold [Bo 1992], the proofs of Theorem 2.2 and Proposition 2.2 are valid for distributions.

References

DEPARTMENT OF MATHEMATICS, TUFTS UNIVERSITY, MEDFORD, MA 02155 USA

E-mail address: equinto@math.tufts.edu