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Let R, denote the Radon transform on R” that integrates a function over hyper- 
planes in given smooth positive measures p depending on the hyperplane. We 
characterize the measures ,u for which R, is rotation invariant. We prove rotation 
invariant transforms are all one-to-one and hence invertible on the domain of 
square integrable functions of compact support, Li(R”). We prove the hole 
theorem: iffE Li(R”) and Ryf = 0 for hyperplanes not intersecting a ball centered 
at the origin, thenfis zero outside of that ball. Using the theory of Fourier integral 
operators, we extend these results to the domain of distributions of compact support 
on R”. Our results prove invertibility for a mathematical model of positron 
emission tomography and imply a hole theorem for the constantly attenuated 
Radon transform as well as invertibility for other Radon transforms. 

1. INTRODUCTION 

Radon transforms have a rich history and have been studied both for their 
intrinsic interest [3, 7, 10, 11, 17, 261 as well as for applications to 
tomography 12, 19-21, 231, partial differential equations [ 14, 151 and other 
fields [8]. In Section 2 of this article we characterize the class of rotation 
invariant Radon transforms on hyperplanes in R” (Proposition 2.1). This 
class is a natural generalization of the classical Radon transform which is 
both rotation and translation invariant (see [ 171 for another natural 
generalization). In Section 3 we state and prove the main theorems. Using 
the theory of Volterra and Abel integral equations we prove Theorem 3.1: 
All rotation invariant Radon transforms are one-to-one on the domain of 
square integrable functions of compact support, Li(R”). The proof implies 
the hole theorem stated in the abstract and generalizes results in [ 10, 1.5, 2 11. 
We also prove that both of these results are true on the domain of compactly 
supported distributions (Corollary 3.2). The proof rests on the theory of 
Fourier integral operators. Finally, in Section 4 we discuss how these results 
pertain to the theoretical aspects of problems in tomography and to inversion 
of other Radon transforms. 
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The support restrictions above are reasonable because the classical 
transform does have a nontrivial null space for functions not of compact 
support [ 18 ]. 

Let . denote the standard inner product on R”, _ j the induced norm; ana 
let dx be Lebesgue measure on R”. Let Cm(R”) be the space of functions 
continuously differentiable to order m = 1, 2,.... Let C, “) be the space of 
continuous functions of compact support on R”. Let S”-’ be the unit sphere 
in R” and let dw and dp denote the standard measures on S”-’ and W, 
respectively. Let o, be the volume of S”-’ in the measure dw. Then 
L2(Snp1 X R) is th e space of square integrable functions in the product 
measure dw dp. For (w,p) E S”-’ x R we denote the hyperplane perpen- 
dicular to w and containing pw by H(w,p) = {x E R” / x . w =p]. Note that 
H(o,p) = N(--w, -p). Let dx, be the measure on N(w,p) induced from 
Lebesgue measure on R”. We have 

DEFINITION 2. I. Let ,u(x,w,p) E Cm(Rn X S”-’ XR) be a stricz;y 
positive function such that ,ti(x, w,p) = ,u(x, -IX, -p). The Radon tramform 
3,: CO@‘)+ C,(S”-’ x R) is defined forfE C,(R”) and (0,~) E S”-’ X R 
3Y 

&f(w,P)=j f(x) ,4x, w, P> dx, . (2.1) 
xsH(w,P) 

In Section 3 we extend the domain of R, to L@“) as well as the class of 
distributions of compact support. 

This definition is a special case of the integral transform defined by 
G&and [ 71. The transform R, is determined by the values of $(x5 w, p) for 
x E N(w,p). Iff is supported in the ball {x E R” 1 /x/ <K}, then RJ(w,$) 
:s supported in the cylinder {(w,p)l lpi <Xi. Also R,f(w,p) = 
/3,/(-w, -p), so R,f can be considered to be a function on hyperplanes. 

The transform R, is rotation invariant if, for each rotation k E O(n) and 
each f E C,(R “), 

R,f(w, P> = RL((fO kl(k- bP). (2.2) 

PRoPmaTroN 2.2. Under the assumptions of ~e~~~?~~~ 2.1, R, is 
-otation invariant if and only f there is a function &r E Cm@‘) SUCEZ that 
li(r,p) = U(-r,p) = U(r, -p) and for all (w,p) and all x E H(w, Q), 
+, WP> = utix -PO/,P). 

The classical Radon transform on R” is simply u for ‘U = 1; this 
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transform is rotation invariant. In [ 171 the author characterized and inverted 
“translation invariant” Radon transforms, another generalization of the 
classical Radon transform. Alexander Hertle solved a related problem in 
[ 111 when he showed the classical Radon transform is characterized by ifs 
behavior under rotations, translations, and dilations. 

Proof: It is straightforward to check that R, is rotation invariant for ,u 
related to U as in the proposition. 

Assume R, is rotation invariant. Let (cu,p)E S”-’ x R and let 
x,, E H(o,p) and k E 0(n). Let dXO,,,, be the Dirac delta function at x0 on 

fw;~~tion(i.;~ Irfhmf(X) Lad (x) dx, =f(x,) for fE C(R”). The 
xo,o,p can be given as the limit as E + 0 of functions 

4, E C?(R”), where (4,) is an approximate identity at x0 on H(o,p).) Using 
(2.1) and (2.2), we see 

iG,> WP> = R,(~xo,,,,)(~>~) = RJ&,,k-~,,p)(k- ‘WP) 

=p(k-lx,, k-‘c&p). (2.3) 

Therefore, for all k that fix w (and hence H(w,p)), ,u(x~, 0,~) = 
,u(k-lx,, , cc-‘,~) and so p is a radial function in the first coordinate on H(c~,p) 
from the point pco. Therefore, for some function U and for x E H(w,p), 
~(x, w,p) = U(]x --pm 1, w,p). A similar argument, now using all k E Q(n), 
shows that U is independent of the second argument; i.e., ~(x, m,p) = 

w.--P42P) f or x E H(w,p). Because p satisfies the hypotheses of 
Definition 2.1, U satisfies the other requirements of the proposition. 

3. THE MAIN THEOREMS 

We now state our main theorems on the invertibility of R,. After giving 
some background information, we prove them. At the end of the section, we 
discuss how our theorems can be used to get explicit inversion formulas for 
R 8’ 

Recall that a function f is supported in a closed set A if f(x) = 0 for 
x@A. 

THEOREM 3.1. Let the Radon transform R, satisfy Definition 2.1. 

(i) For each M>O, R,:L2({~ERnIjxl<M})+L2(S”-1XR) is 
continuous. 

Assume in addition that R, is rotation invariant and f E Li(R”). 

(ii) If K > 0 and R, f is supported in { (w,p) IIp I< K}, then f is 
supportedin {xER”IIxi<K). 

(iii) R,: Li(R”) + L2(S”-’ X R) is one-to-one. 
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Part (ii) is the hole theorem; if fE I,$?“), then values off 0u:side oi’ a 
ball centered at 0 are determined by values of Jon hyperplanes not inter- 
secting the ball. And (iii) proves that R, is invertib!e on domain k@“). 

Let B’(R”) (respectively, g’(,S+’ x K)) be the space of d~~tr~bu~~ons of 
compact support on R” (respectively, S”-” x R). A distribution u is 
supported in a closed set A if, for all smooth functions f of compact support 
that are zero on A, u(f) = 0 19, 121. 

We now state a distribution analog of Theorem 3.1. 

COROIJARY 3.2. Let the Radon transform R, satisfy Definition 2.1. 

(i) R,: B’(R”) + Z’(Sn-’ x R) is continuous. 
Assume R, is rotation invariant and u E 8’(Rn). 

(ii) If K > 0 and R, u is supported in { (co,p) / : pi < I(}, then u is 
supported in {x E R” 1 1x1 <K}. 

(iii) R, : Z’(R”) -+ Z’(Sn-’ x R) is one-to-one. 

Part (ii) of these theorems generalize theorems of Helgason [IO], Ludwig 
i 151 and Salmon [21] in which they proved this result for the classical 
Radon transform and various classes of functions. 

Before proving the theorems, we recall some preliminary definitions. 
A spherical harmonic on S ‘-I is the restriction to S”-’ of a harmonic 

polynomial on R”. Spherical harmonics are dense in L ‘(Sn- ‘, dw); we lee 
Yl,(w), 1 E N, m = 1, 2 ,..., N(I) be an orthonormal basis, where each Y,, is a 
homogeneous polynomial of degree 1 and N(I) is the number of spherical 
harmonics of degree 1 in a basis. For n > 3, Let E, = (n - 2)j2 and let C+(t) 
denote the classical Gegenbauer polynomial of degree 1. These polynomials 
are orthogonal on [--I, l] with weight (1 - 12)‘-“2 dt. Spherical harmonics 
on S’ are simply trigonometric polynomials. The Chebychev polynomial of 
the first kind of degree I is denoted Tl(t), I E N and these polynomials are 
mutually orthogonal on 1-1, l] with weight (1 - t2)-1’2 dr. For their other 
properties see [6]. 

We also need the following results from the theory of Pntegral equations. 

THEOREM A. Let a<b and let E(s,t)EC’([a,b]‘), E(s,s)fOfor a!! 
3 E [a: b]. Let g(t) be absolutely continuous for t E [a, b], g(u) = 0, 
g’ E L’([a, b]). Then the Volterra integral equation 

has a unique solution f~ L ‘( [a, b]). 

The proof consists in showing that (3.1) is equivalent to a Voherra 
integral equation of the second kind by taking the first derivative of (3.1). 
See 124, pp. IO-161 and Lemma 3.3 below. 
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THEOREM B. Let a < b and let g and E satisfy the hypotheses of 
Theorem A. Then the generalized Abel integral equation 

g(t) = jr E(s, t)(t - s) ~ “*f(s) ds 
a 

(3.2) 

has a unique solution f E L’([a, b]). 

To prove Theorem B, first multiply both sides of (3.2) by (U - t)-1’2 and 
integrate from a to U. Because the mapf+ 1: (U - t)p”2f(t) dt is one-to-one 
and continuous from L’([a, b]) to L2([a, b]), one can finish the proof as 
Yosida does in the continuous case [25, pp. 154-1571. See also [22]. 

Proof of Theorem 3.1. The proof of (i) is left to the reader. It is similar 
to the proof in [20] for the classical Radon transform. 

The proofs of (ii) and (iii) will go as follows: We expand R, f in spherical 
harmonics and show that its coefficients satisfy certain Volterra or Abel 
integral equations of the first k,ind. The nature of these equations imply (ii) 
and therefore (iii). 

Let f E Li(R”). Assume M > K > 0 such that f is supported in the ball 
{xER”I jxl<M) and Rwf is supported in { (w,p) 1 1 pi <K}. Let fi, be the 
coefficient of Y,, in the spherical harmonic expansion of f, fim(r) = 
j,+,f (m) Y,,(w) do. Then fl, E L*([O, M], rnpl dr). We now calculate 
R,(f,, Y,,). Let p > 0, co E S”-‘. Let SO={rES”-‘jr.w=O}, S+= 
{<E S”-’ / 5. w > 0}, and let dz be the standard measure on So g SnP2. For 
z E So, # E [0, n/2), the map 

(z, 4) + (cos 4) w + (sin 4) t = < (3.3) 

gives coordinates on S ’ in which the standard measure dc can be written 
dc = (sin #)“-’ d$ dz. Furthermore, cos 4 = <. o. In a similar manner 

(z, 4) +p set #((cos 4) w + (sin 4) r) = x (3.4) 

gives coordinates on H(o,p) in which dx, = (p”-‘/(cos #)“)(sin $)“-’ d# dz. 
Therefore, under the map x: S+ + H(w,p), x(l) = (p/({ . o)) r, the pull back 
to S+ of dx, is x* dx, =p”-‘(r . w))” d& This proves 

RLLtfhl Y,,)(WP) = jl~S+fl,(P/(s * w)) Y,,(r) 
(3.5) 

x u(P(l - (< * oJ)‘)“‘/(<. ~),p)($-~/(< . 0)“) d& 
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where U is as in Proposition 2.2. Using the Funk--He&e Theorem j6j %i 
n > 3, /z = (n - 2)/2, we get 

x U(p(l - r”)‘l’/r,p)(pn~I/r”)(l - ,y’;2: dr. (3.3) 

Therefore the integral in (3.6) is the coefficient sf Y,, in the spherical 
harmonic series for Rr$ We call that coefficient (I?Jn)lm. Changing 
variables s = r/p in the integral in (3.6) and letting t = l/p, we see 

x U((1 - (s/t)*)“‘2/s, 1/t) s -“(l - (s;t)y IL2 ds, (3.T) 

where 0 < L1 < 1/M. We can integrate from ck to f because fl,(t) = 0 for 
I > M. Following the above arguments for n = 2, we conclude 

&fhm Cl/t> = 2 \I ~,(~lwh(~l~) 
-a 

x U((1 - (s/t)*)“*/s: I/t) s -‘(I - (s/e)*) II2 ds: (323) 

where 0 < a < l/M. 
We now prove (ii). Let b = l/K. By hypothesis, Jf,,(l/s> E L2( la, Si) and 
uJf)rm (I/t) = 0 for t < b = l/K. Recall that U(r,p) is a smooth positive 

function satisfying U(r,p) = U(-r,p). Therefore, for n = 2, 3,..., 

0 = (Ruf)rm (l/t) = i” W(s, t)fi,(l/s)(t - .Qcn-3)‘i ds 
a 

(3.9) 

for some function WE GcO( [a, b] 2), W(s, s) # 0 for all s E [a: b 1. 
For 12 = 2, we can apply Theorem B to conclude that j”,,(l/s) = 0 for 

s E ia: b] and so f,,(r) = 0 for r > K = l/b. This proves (ii) for vl = 2. 
xe Theorem A to prove (ii) for n = 3. To prove (ii) for p1 > 3 we use 

LEMMA 3.3. VK(s, t) E C’([a, bj2),fE L”(ja, S]), then 

3 absolutely com‘inuous OH [a, b] and hasjht derivafiz’e 

K(t, t)f(t) + (I g- (s, t)f(s) ds. 
“a 

(3.1:) 
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This is proven by showing that the integral from a to x of (3.11) is (3.10). 
This is clearly true for f continuous and is true for fE L * by continuity. 

If n is even, n > 2, then we use Lemma 3.3 to take (n - 2)/2 derivatives of 
(3.9) with respect to t. This gives an integral equation of the form (3.2) [25, 
pp. 153-1541 and Theorem B proves thatf,,(r) = 0 for Y > K = l/b. For odd 
n > 3 the proof is similar. Equation (3.9) is reduced to (3.1) by taking 
(n - 3)/2 derivatives. Therefore (ii) is true for all II. This implies (iii) and 
finishes the proof of the theorem. 

Proof of Corollary 3.2. It is well known that R, is an elliptic Fourier 
integral operator [9]. In [ 171 we considered R, as an operator from CF(R”) 
to C:(Y), where Y= S”-’ x RI-, where - is the equivalence relation 
(m,p) - (-w, -p). We denote the equivalence class of (w,p) by [w,p]. The 
local canonical graph Tc T*(R” x Y) associated to R, is a set that lies 
above 

Z={(x, [w,p])ER”x Ylx.w=p} (3.12) 

[ 17, p. 3291. Because r is a conic local canonical graph and R, preserves 
compact support, R, is continuous from 8’(Rn)+ 8’(Sn-’ X R) [12, 
p. 1301. This proves (i). 

Recall that the singular support, sing supp, of a distribution is the set of 
points near which the distribution is not given by a smooth function (see 

[ 121). 
We now prove (ii). Let R, be a rotation invariant Radon transform. Let 

u E gr(Rn); choose M > 0 such that the support of u lies in the ball 
A = {x E R”/IxI <M}. Assume 

R, u is supported in B = {[u,P] E YI IPI GO K <M. (3.13) 

Then R, can be changed off A to become a properly supported [ 121 operator 
that agrees with R, on B’(A). By the conclusion of [9, Proposition 6.51, 
which is valid for R,, there is a Fourier integral operator S such that the 
pseudodifferential operator SR, is elliptic and hence preserves singular 
support on 8”(A). The local canonical graph associated to S is Tf, where r’ 
is r with T*R” and T* Y coordinates reversed. Using (12, (2.5.9)], the wave 
front set of u can be calculated in terms of r’ and the wave front set of R,u. 
From that calculation and the fact that sing supp u is the projection to R” of 
the wave front set of u [12, Theorem 2.5.31, we see 

sing supp u c {x E R” ( for some [w,p] E sing supp R,u, (x, [w,p]) E Z}. 

(3.14) 

By hypothesis (3.13), sing supp R, u c B. Using expression (3.14) for sing 
suPP u together with (3.12), we see singsuppuc{xER”] ]x]<K}. 
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Therefore u(x) is smooth for /xi > K. Since u has compact support, we can 
use Theorem 3. I (ii) to conclude u must be zero for ~ x / > M. This proves (ii)* 

A variation on this argument shows that the null space of R, on domain 
X’(R”) consists entirely of smooth functions of compact support, 
Theorem 3.l(iii) this null space is {O). 

Remarks on Inversion Formulas for R, 

One method of getting an inversion formula for R, is to invert each 
integral equation (3.7) explicitly. For the classical Radon transform this has 
been done by Cormack [2] on R2 and by S. R. Deans [5] on R” for M > 2. 
For each 1, Deans found an integral operator involving 6: that, when 
composed with the operator in (3.7), produces an easily invertible operator 
(see [5, Eq. (17)]). C ormack’s operator involves T,. 

Perhaps one can invert some R, using orthogonal expansions (see j 161). 
Alternatively, to invert R,, one can take derivatives of (3.9) as in the proof 
of Theorem 3.1 to get a Voiterra integral equation and then use its ~eurna~~ 
series [ 14, 25 1 to invert it. For even n one first needs to convert the resuiting 
Abel equation (3.2) to a Volterra equation [25, pp. 154-1571. Even when the 
Neumann series cannot be summed, at least it might provide information 
about the asymptotic behavior of the solution. 

Finally, since R, is an elliptic Fourier integral (operator, one can try to 
Invert it using the theory of pseudodifferential and Fourier integral operators 
as the author did in [ 171 for another class of Radon transforms. 

4. z‘iPPLICATIONS 

The first application is to a theoretical probiem related to positro:! 
emission tomography (PET). 

EXAMPLE 4.1 ?ET Scanning. Scintillation detectors are placed tn a circic 
around a positron-emitting object. If x is a point in the plane of the detectors? 
we assume emissions at x occur at the same time in opposite directions i 1 j 
and there is an equal probability for emissions to travel along any line 
through X. Let f(x) be the function giving the concentration of emitters at X. 
if detectors at A radians and B radians on the circle detect an emission at 
almost the same time, it is assumed that positrons (and then gamma rays) 
were emitted somewhere along the line segment H between A and 49. The 
number of emissions detected almost simultaneously at A and should be 
proportional to the integral off over N in Lebesgue measure dx,. Because 
the detectors are not point detectors, however, the probability that an 
emission on N is detected at both A and B is related to the position of the 
emitter along H. Assume the detector at A runs from A - a’ radians to A + d 
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radians (d > 0) along the circle enclosing the object and that the detector at 
B runs from B - d to B + d radians along the circle. If an emission occurs at 
x E H, it will be recorded at both A and B only if the line the gamma rays 
travel along intersects both arcs (A - d,A + d) and (B -d, B + d). 
Furthermore, each detector itself is more sensitive at the center than at the 
edges [ 1, pp. 159-1601. Therefore an emission at the midpoint of H is more 
likely to be detected at A and B than one near the ends of H. This 
probability will modify the integral above by a function p symmetric about 
the midpoint of H. The function p is rotation invariant about the center of 
the circle of detectors as a function of the line H. Hence the number of 
emissions detected almost simultaneously at A and B is proportional to the 
integral off over H in the measure p dx,. Therefore this example can be 
modeled as the discretization of the rotation invariant Radon transform R, 
on R2. We point out that scatter and random coincidences are problems 
inherent in PET [l] that are not addressed in this model. It is possible that 
they can only be resolved practically. 

By Theorem 3.1 this transform 11, is invertible. The sort of inversion 
formulas gotten from the integral equations of Theorem 3.1 might not be 
suitable for practical computer reconstructions; they can become unstable for 
large I as well as for reconstructions near the origin ([2, Eq. (18); 5, Eq. 
(17)] are inversion formulas for the classical Radon transform gotten from 
equations equivalent to (3.7). The kernel of the inverse operators do blow up 
for large I and for x close to the origin). 

Because R, is invertible and satisfies the hole theorem (Theorem 3.l(ii)), 
however, it is reasonable to try to find other inversion algorithms for this 
example and, perhaps, even algorithms that only use integrals over lines 
away from the center to reconstruct the concentration of emitters away from 
the center (see [ 19, p. 4251) (after having calculated p!). 

Our next example was discussed at the 1981 conference on Radon 
transforms and their applications at Tufts University. 

EXAMPLE 4.2. The Constantly Attenuated Radon Transform on R2. The 
attenuated Radon tranform is a model for single photon emission 
tomography with constant attenuation [23]. Let BE [0,2n] and let 
r!? = (cos 19, sin S), 19~ = (-sin 0, cos 19) Let M, p E R, f E Li(R ‘). The cons- 
tantly attenuated Radon transform evaluated on f is 

T&-(&p) = jrn f (p# + ~0’) c” ds. 
-cc (4.1) 

Values of T,,,,f correspond to the radioactivity measured directionally outside 
the body. The transform TM is not rotation invariant but 

I(T,f(B,p)+T,f(-8,-p))=R,f(8,p) (4.2) 
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where 

p(x, #,p) = cash ox -&I. 

Because this R, is rotation invariant, we find the known result that TjM ‘s 
one-to-one on II,:(R’) [23]. We learn, however, the new result that r,, also 
satisfies the hole theorem (Theorem 3.1 (ii)). 

It is interesting to note that averaging like (4.2) has already been done, 
independently, for practical reasons [ 131. Apparently it decreases the effects 
of attenuation when using the standard Fourier inversion algorithin on single 
photon emmision tomography [ 131. Exact inversion methods for a,, are 
given in [23] and more recently by A. Markoe [27]. 

The trick of Eq. (4.2) can be used to prove invertibility for any transform 

for which N(s,p) = N(s, -p), N E P(R 2), N > 0. 

EXAMPLE 4.3 More general Radon transfo.rms. Radon transforms have 
been defined in much more general settings than we have discussed 14, 7; 8. 
10,261. We first give an extension to transforms integrating over other 
manifoids than hyperplanes in R”. Let (co,p) E S”-’ X R and let L(w,p) be 
a specified submanifold of R” (perhaps a hyperboloid [3] or sphere passing 
hrough the origin 14, 181). If a measure is given on each L(w,p), one can 
define a Radon transform 5’ that takes a functionSE Co@“) to its integrals 
over the L(w,p) in their given measures. A natural question to ask is 
whether S is invertible. Losing the techniques above, we can answer this 
question in some cases. 

The crux of the proof of Theorem 3.1 is to write the integral of R,Sover a 
hyperplane as an integral over a sphere (3.5) and, if the measure p is ‘“nice”‘ 
(rotation invariant), use the Funk-Hecke theorem to simplify the integral 
Jver the sphere. This results in invertible integrai equations (3.9) involving 
:he spherical harmonic coefficients of J: 

In many cases this procedure can be used for the transform S above. If 

each L(w,p) can be mapped to a cap of the sphere 
i(ES"-'/~~W>4l} f or some a, perhaps depending on p, (4.3) 

and 

there is a positive function m E Cm(R ‘) such that the smooth 
:measures on all L(w,p) project onto measures m(w . (,p) d< on 

the caps, (4-i) 

then the Funk-Wecke theorem can be used, as above, to get integral 
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equations involving the spherical harmonic coefficients of the function f. If 
the equations are invertible (e.g., of the form (3.9)), then the transform is 
invertible. 

These ideas were behind the result of Cormack and the author in [4] that 
produced an inversion formula for the Radon transform on spheres through 
the origin in R”. Cormack has used this idea to get nice inversion formulas 
for integrals over various parameterized families of curves in the plane [3] as 
well as in R” [unpublished work]. Moreover, this procedure can certainly be 
done on any of the above manifolds with any smooth positive measures that 
satisfy (4.4). Such measures are rotation invariant. 

The Radon transform that integrates over “V’s” in R2 is another example 
that can be inverted in the manner outlined above. Let CI E (0,7c/2) and 
(0, P> _E P,271]x (0, 00 1; then L(B,p)= {xER*/x=pf?tt(Bta) or 
x =pB + t(B - a) for some t > 0) is a “V” with vertex p# and angle 2a 
(notation as in Example 4.2). ForfE C,(R2), let Sf(g,p) be the integral off 
over L(8,p) in its standard measure, arc length. By performing (4.3), it is a 
simple exercise to calculate the spherical harmonic coefficients (Fourier coef- 
ficients) of Sf in terms of those off. Then a change of variable shows that 
the coefficients off satisfy invertible integral equations of the form (3.1). The 
nature of the equations shows the hole theorem: The integrals off over all 
V’s, L($,p), not intersecting a ball centered at the origin in R * determine f 
outside of that ball. 

Our final example involves the Radon transform on real projective space, 
RP” [IO]. We project it onto a rotation invariant Radon transform on R”. 
Consider RP” as the set of lines through the origin in R”+ ‘. For <E S”, the 
projective hyperplane H(r) is the set of lines through the origin in lint1 
perpendicular to <. Let e,, i = (O,..., 0, 1) E R”+’ and let w be affine 
projection from RP”-H(e,+,) to {(~i,...,x,+i)ER~+’ ]xn+i= 1) rR”. If 

tfe,.,, then w(H(t)) is an (n - I)-dimensional hyperplane in R” and the 
standard measure on H(5) [lo] projects onto a rotation invariant measure on 
this hyperplane (the measure is closely related to dxH). Therefore if 
f E C(RP”), then its Radon transform evaluated at H(5) is the same as a 
specific rotation invariant Radon transform on Rn off 0 I+-’ evaluated at the 
hyperplane v(H(<)). Taking q = e, + i and using Theorem 3.1 gives the 
following hole theorem: 

PROPOSITION 4.1. Let q E S”, d > 0. Zf f E C(RP”) is zero on some 
neighborhood of H(v) and its Radon transform is zero on all projective 
hyperplanes H(c) for which 1 q - <I < d, then f is zero on (J ,d-V, <d H(l). 

It is well known that this Radon transform on RP” is invertible [lo]. 
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Erratum 

Volume 91, Number 2 (1983), in the article “The Invertibility of Rotation 
Invariant Radon Transforms,” by Eric Todd Quinto, pp. 510-522. 

The author has discovered an error in the proof of Corollary 3.2(ii) of [ 2 ] 
(in general, the conclusion below (3.14) does not follow from (3.14)). This 
note presents a correction that proves a stronger theorem. 

Let R, be a Radon transform that integrates over hyperplanes in R” with 
measure @, cc), p) dx, on the hyperplane H(w. p) as in Definition 2.1 [ 2 I. If 
R, is rotation invariant, then &, o, p) = U(lx - pal, p) for a function U as 
in Proposition 2.2 [2]. We have: 

THEOREM. Let R, be a rotation invariant Radon transform satisjjing 
,u(po, o.p) # 0 for all (w,p). Let u E P’(R”) and K > 0. Assume R,, u is 
supportedin ((co,p)(Ipl<K). Thenuissupportedin (xER”lxl<K}. 

This generalizes Theorem 3.l(ii) as well as Corollary 3.2(ii) because of 
the weaker assumptions here; p is not required to be positive. 

Proof Let K > 0. Let g E CJI’(S’-’ X R). then R,*g(x) = 
.I&, g(o, x . W)P(X, w, -Y . u) do and R,*: C”(S”-’ x R)-+ C”(R”) is 
continuous [I]. Let g(o, p) = g,(p) Y,(w), where Y, is a homogeneous 
spherical harmonic of degree I and g, is even if 1 is even, odd of I is odd. 
Then, by the nature of ,U = 0: the Funk-Hecke theorem proves 

20) 
“-’ R;g(x) = \ 

ci (1) 
Y,(.u’) I.‘r~‘g,(c) C;‘(c/r) 

-0 

(1) 

where x’ = x/Ix/, r = Ix/, and the other notation is as in [ 2 1. 

This is the key to the proof of: 

LEMMA. Let R,, be a rotation imariant Radon transform and let K > 0. 
Let 1 E N U (0) and let ft(r) E Cx( [0, co)) be equal to 0 for Irl < K, then 
there is a unique g, E Cm(R) equal to 0 for 1 pi < K and ecen for 1 even, odd 
for 1 odd such that for any homogeneous spherical harmonic of degree 1, Y,. 

R,h(&P) Y,W)W) =.fl(l.~l) Y,W). 
602 
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(2) 



ERRATUM 603 

Proof. Because f, = 0 on [0, K] the lower limit of integration in (1) can 
be taken to be K/2. One solves the integral equation in (1) for g, in terms of 
f, as outlined in [2], by taking derivatives and using Theorem A or B. 
Because the kernel of the resulting integral equation is smooth andf, is, so is 
the solution (for (n - 3)/2 odd, the forcing term [3, 41.61 in the resulting 
Abel equation [3, 4 1.4’1 is smooth becausef, = 0 near K/2). By uniqueness. 
the solution is zero for IpI < K. This proves the lemma. 

Let u E Z”(R”). Letf,(r) E P([O, co)) be supported in (K, 00) and let Y, 
be a spherical harmonic. Let g/(p) satisfy (2). Therefore (u,f, Y,) = 
(u, R:( g,( p) Y,(w)))= (R, U, g, Y,) = 0 as g, is supported in (K, co). As 
sums off, YI are dense in the set of C” functions supported in (x ] Ix > K}, 
u is supported in (x ( 1x1 < K). The case K = 0 follows immediately. 
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